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ABSTRACT

We present Instant Photorealistic Neural Radiance Fields
Stylization, a novel approach for multi-view image styliza-
tion for the 3D scene. Our approach models a neural radiance
field based on neural graphics primitives, which use a hash
table-based position encoder for position embedding. We
split the position encoder into two parts, the content and style
sub-branches, and train the network for normal novel view
image synthesis with the content and style targets. In the in-
ference stage, we execute AdaIN to the output features of the
position encoder, with content and style voxel grid features
as reference. The stylization of novel view images could be
obtained with the adjusted features. Given a set of images
of 3D scenes and a style target(a style image or another set
of 3D scenes), our method can generate stylized novel views
with a consistent appearance at various view angles in less
than 10 minutes on modern GPU hardware.

Index Terms— Neural Radiance Fields, stylization

1. INTRODUCTION AND RELATED WORK

Image stylization has been widely researched since [1] pre-
sented a pioneering artistic style transfer algorithm. Fruitful
follow-up works made it easier to adopt and higher quality for
visualization[2, 3, 4]. Video stylization is a similar task to 3D
scene stylization. Video stylization aims to style images and
keep consistency between different frames[5, 6, 7].

For the task of 3D scene stylization, the methods vary
with the 3D scene representation approach, such as mesh[8],
point cloud[9], and NeRF[10]. In this paper, we focus on
the NeRF stylization, whose inputs are image sets of scenes
and outputs are novel view stylization images. NeRF[11] is a
popular method for 3D scene representation. Some methods
emerge with NeRF 3D scene stylization. Style3D[10] first at-
tempted stylization for NeRF. Style3D[10] used an implicit
representation of the 3D scene with the neural radiance fields
model and a hypernetwork to transfer the style information
into the scene representation. StylizedNeRF[12] proposed a
mutual learning strategy for the stylized NeRF and 2D styl-
ization method. StyleMesh[13] optimized an explicit texture
for the reconstructed mesh of a scene and stylized it jointly
from all available input images. ARF[14] propose a novel
deferred back-propagation method to enable optimization of

memory-intensive radiance fields using style losses defined
on full-resolution rendered images. SNeRF[15] alternates the
NeRF and stylization optimization steps. INS[16] decouples
the ordinary implicit function into a style implicit module and
a content implicit module to encode the representations from
the style image and input scenes separately. UPST[17] pro-
posed a hypernetwork to control the features of style images
and use the 2D method to realize stylization. However, these
methods made complex designs for composing 2D stylization
methods, making them hard to extend. Besides, these meth-
ods suffer from a long training time.

To this end, we present Instant Photorealistic Neural Radi-
ance Fields Stylization, a novel approach for multi-view im-
age stylization for the 3D scene. Our method leverages the
multi-resolution hash table architecture for NeRF proposed
by Instant-NGP[18]. Our method uses the trainable feature
vectors in the hash table to acquire the latent codes for styl-
ization. First, we split the position encoder of instant neural
graphics primitives into two parts: content and style. With
the position encoder, our network can train for two scenes in
less than 10 minutes. After training for normal scene synthe-
sis, we execute AdaIN on position encoding features of novel
view synthesis, with content and style voxel grid features as
reference. Adjusted results are used for color predicting, and
unadjusted results serve for density predicting. Unlike pre-
vious works whose style targets are only images, our method
can accomplish stylization between two image sets for scenes.
For stylization with images, we place the style images in the
center of the 3D space and treat them as if they were scenes.

• We propose a novel Instant Photorealistic Neural Radi-
ance Fields Stylization method. The training for novel
view stylization image synthesis only costs 10 minutes.

• We propose, for the first time, style transfer from a 3D
scene image set to a 3D scene image set. We extend
the style target of NeRF stylization from images to 3D
scene image sets.

• We propose to manipulate the position embedding fea-
tures(with position encoder) of NeRF for stylization.
Our method can be extended to the migration of more
image stylization methods.
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2. METHOD

The overview of our method has been shown in Fig 1. We
train a model with two branches for content and style encod-
ing in the training process. Then, we calculate the content
and style position encoding features for voxel grid positions
in the rendering process. With these features, AdaIN[19] is
executed for stylization. The style target can be an image set
for a scene or one style image.
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Fig. 1. The architecture of our method.

Hash encoder with multilevel grid feature vectors. For im-
proving the training time of NeRF, many methods have been
proposed. Instant-NGP[18] is one of state-of-the-art methods.
Instant-NGP position encoder adopts a neural network with
trainable weight parameters ϕ and trainable encoding param-
eters θ. Encoding parameters are arranged into L levels and
conceptually stores feature vectors at the vertices of a grid.
Parameters in each level contain up to T feature vectors with
dimensionality. For a given input coordinate (x, y, z), the en-
coder searches the surrounding voxels at L resolution levels
and the feature indices of these voxels by hashing their inte-
ger coordinates. For each level, the feature is the linear inter-
polation of the features according to the relative position of
(x, y, z) and surrounding voxels. The encoded features are a
concatenation of the result of each level. Compared with typi-
cal position embedding, the hash encoder works faster, which
could speed up from hours to minutes, ensuring high-quality
rendering.

2.1. Training with two parallel position encoders.

As an implicit neural representation, NeRF takes 3D co-
ordinates x=(x,y,z) and views direction d as inputs, colors
c=(r,g,b), and volume density as outputs. Usually, the im-
plicit function is multilayer perception(MLP). Our method
uses the hash encoder with multilevel grid feature vectors,
an efficient architecture proposed by Instant-NGP. Unlike
NeRF for a single scene, our network serves for two scenes.
Our network divides the position encoder(hash encoder and
MLPDensity) for a single scene into two branches and keeps

other parts unchanged. The two branches accomplish the
position embedding for the content and style scenes in the
training process. Moreover, the direction embedding is ac-
complished by a shared direction encoder(spherical encoder).
We train the network for novel view synthesis with content
and style target simultaneously, as shown in Fig1.

When fitting scenes, we use Huber loss for both content
and style targets:

L =

{
1
2rel

2, for rel <= δ

δ(rel − 1
2δ), otherwise.

rel = |Cpredict−Ctarget|

(1)
where Cpredict, Ctarget denotes the rendering color value of
images and the target value, δ is a hyperparameter. In the
training process, The position encoders of content and style
are optimized according to the content and style target, re-
spectively. The MLPRGB is optimized according to the con-
tent and style target.

For image set styles, we treat it as a regular 3D scene. The
content and style scene are trained jointly. For a style image,
we treat it as if it is placed in the center of the 3D space.
We use 3D colored voxels to represent the 2D image pixels,
as shown in Fig2. Rendered 3D colored voxel images with
different views are used for training like a typical 3D scene.
In the training process, random views are selected to optimize
the radiance field.

2D image
3D colored voxels

with different views

Fig. 2. 2D style image and corresponding 3D colored voxels
with different views.

Compared with the network for one scene, our network
has two position encoder sub-branches, which increases stor-
age to a certain extent. The architecture of the hash encoder
promises fast training for NeRF. Although we trained two
scenes, our method’s run time did not increase much. Our
method could accomplish training in 10 minutes.

2.2. Stylization inference using AdaIN with voxel grid
features.

Once trained, our network can render high-quality images for
content and style scenes in novel views. We use AdaIN[19]
for stylization inference in the inference stage. We first
calculate the results of the content and style position en-
coder, with voxel grid positions as input. We use voxel grid
V NV ×NV ×NV to represent the 3D space, where NV denotes
voxel resolution. The results(Voxel Grid Feature) contain
color and density features.
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To maintain the geometry consistency of the scene, the
density is reserved for the final rendering. For color styliza-
tion, an AdaIN is executed. Unlike the original AdaIN[19],
our method executes AdaIN with reference parameters. The
AdaIN module adjusts the feature f(x, y, z) for stylization
using Eq.2.

AdaIN(f(x, y, z)) = F s
σ(

f(x, y, z)− F c
µ

F c
σ

) + F s
µ (2)

where F c
µ, F c

σ , F s
µ and F s

σ denote the mean and std of content
and style voxel grid features. The AdaIN module adjusts the
content position encoder features from the content distribu-
tion to the style target. According to the type of style target,
our method can realize style transfer with artistic style im-
ages, photorealistic style images, and image set style images.

With AdaIN, the features are adjusted from content to
style. In turn, the adjustment works from style to content fea-
tures. Shared MLPRGB promises the transfer is reasonable.
Our method uses the feature outputs of the position encoder
as latent codes for 3D scene stylization. Our method can be
extended to more 2D stylization methods.

3. EXPERIMENTS RESULTS AND ANALYSIS

We conduct qualitative and quantitative experiments. Com-
parisons between our method and state-of-art methods illus-
trate the superiority of our method. In qualitative evaluation,
we execute comparison on NeRF-Synthetic datasets[11] with
artistic style images and Local Light Field Fusion(LLFF)
datasets[20] with photorealistic style images. We demon-
strate the results of style transfer between image sets of
scenes. Moreover, we show the results of controlling the
degree of stylization. In quantitative evaluation, we calcu-
late the warped LPIPS metric[21] for short and long-term
consistency. Furthermore, we conducted a user study on the
LLFF datasets for stylization and consistency comparisons.
The code is accomplished using Jittor[22] on a single Nvidia
3080 GPU.

3.1. Qualitative Results

Style transfer with artistic style images. In Fig.3, we
demonstrate style transfer results with artistic style images.
We compare our method with state of art methods UPST[17],
INS[16], Style3D[10], Perceptual Loss[23], MCCNet[7] and
ReReVST[24]. These comparison results are cited from [17].
Only INS, UPST and our method have good performances
in geometry. Other results could not maintain high-quality
results. For example, the whole space of the chair is cluttered
in the result of Style3D. Artifacts exist with chair in the styl-
ization results of Perceptual Loss ,MCCNet and ReReVST.

Style transfer with photorealistic style images. In Fig.4,
we demonstrate style transfer results with photorealistic

No style Style image Ours UPST INS Style3D Perceptual Loss MCCNet ReReVST

Fig. 3. Qualitative comparisons with artistic style images.

style images. We compare our method with state of art
methods UPST[17], ARF[14], AdaIN[19], MCCNet[7],
ReReVST[24]. These comparison results are cited from [17].
Our method, UPST and ReReVST preserve the scene’s ge-
ometry. For color stylization, the details vary with methods.

MCCNet ReReVSTUPST AdaINARFInput views Style image Ours

Fig. 4. Qualitative comparisons with photorealistic style im-
ages.

Style transfer between image set of scenes. Besides style
images, our method is applicable to work with style transfer
between image sets of two scenes. To the best of our knowl-
edge, we are the first to propose style transfer between image
sets of scenes. So, we only demonstrate some results without
comparison in Fig. 5. Our method can accomplish styliza-
tion in the inference process from content to style and style to
content.

(a) Content target (b) Style target (c) From content to style (d) From style to content

Fig. 5. Stylization results of our method on NeRF-Synthetic
datasets and LLFF datasets.

Content-style trade-off. The degree of stylization can be
controlled in the inference by adjusting the style weight α in
Eq.3. As shown in Fig.6, the style of images smoothly trans-
fers between content and style targets by changing α from 0
to 1.
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AdaINc(f(x, y, z)) = (1−α)f(x, y, z)+αAdaIN(f(x, y, z))
(3)

Style𝛼 = 0 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8 𝛼 = 1

Fig. 6. Content-style trade-off.

3.2. Quantitative Results

Consistency Measurement. We measure the short and long-
term consistency using the warped LPIPS metric[21]. A view
v is warped with the depth expectation estimated by NeRF.
The score is formulated as:

E(Oi, Oj) = LPIPS(Oi,Mi,j ,Wi,j(Oj)) (4)

where W is the warping function, and M is the warping mask.
Only pixels within the mask Mi,j are taken for the calcu-
lation. Five scenes in the LLFF dataset are taken for com-
parison. We use 20 pairs of views for each scene and gap
5(Oi, (Oi+5) and 15(Oi, (Oi+15) for short and long-range
consistency calculation. The short- and long-range consis-
tency comparisons are shown in Tab. 1 and Tab. 2, respec-
tively. Our method outperforms other methods by a signifi-
cant margin.

Method Fern Flower Horns Orchids Trex
AdaIN 0.0091 0.0077 0.0098 0.0099 0.0085

MCCNet 0.0075 0.0055 0.0088 0.0083 0.0070
ReReVST 0.0045 0.0030 0.0041 0.0060 0.0027

ARF 0.0055 0.0033 0.0061 0.0088 0.0064
UPST 0.0030 0.0024 0.0034 0.0041 0.0025
Ours 0.0023 0.0025 0.0025 0.0037 0.0018

Table 1. Short-range consistency.

Method Fern Flower Horns Orchids Trex
AdaIN 0.0497 0.0458 0.0493 0.0353 0.0212

MCCNet 0.0407 0.0217 0.0270 0.0471 0.0168
ReReVST 0.0195 0.0110 0.0220 0.0394 0.0285

ARF 0.0355 0.0185 0.0247 0.0397 0.0218
UPST 0.0320 0.0100 0.0157 0.0043 0.0186
Ours 0.0049 0.0099 0.0057 0.0071 0.0140

Table 2. Long-range consistency.

User study. A user study compares the stylization and con-
sistent quality of our method and others. We use the LLFF
dataset for the study. Each scene in the LLFF dataset is styl-
ized with our and other methods. We invited 50 participants
and showed them the videos of stylization novel view synthe-
sis results. For the same scene, we asked the participants to
select the better results from our and another method, consid-
ering indicators stylization quality and geometry consistency.

We collected 1000 votes for each indicator. Fig.7 shows the
result of the study. Our method outperforms other methods in
both stylization quality and geometry consistency.

0%

50%

100%

0%

50%

100%

(a) Consistency (b) Stylization

0.0 0.0 11.6 0.0 36.7

100.0 100.0 100.088.4 63.3

5.5 10.2 16.7 3.5 42.3

94.5 89.8 96.583.3 57.7

Fig. 7. User study.

4. DISCUSSION

While our method shows competitive quality and better speed
compared to state-of-the-art NeRF stylization methods, sev-
eral challenges still need to be addressed in future work. The
position and direction encoder output features are combined
for color calculation. We only execute AdaIN on the posi-
tion encoder features, leaving direction encoder features un-
changed. So, our method does not handle stylization on the
illumination and reflection.

Trainable encoding parameters are the core for fast scene
training. For one scene, these parameters are random in twice
training. Our method only promises the characteristics of
stylization results from content to style. Nevertheless, the de-
tails of the results vary with the random encoding parameters.
Finding a solution for fixed MLPRGB for multi-scenes is
necessary for stable results. If solved, the stylization could be
accomplished with any two scenes using the fixed MLPRGB .

5. CONCLUSION

In this paper, we present Instant Photorealistic Neural Radi-
ance Fields Stylization, a novel approach that instantaneously
styles 3D scenes. We split the position encoder of instant neu-
ral graphics primitives into two parts. This architecture lets
our network train neural radiance fields for two scenes in less
than 10 minutes. Due to the output features of the position
encoder accounting for scene synthesis, it could be used for
scene edit. We use AdaIN for scene stylization with voxel
grid features, which could be extended to more image styliza-
tion methods. Our method extends the style target from style
images to image sets of scenes. Our method can generate styl-
ized novel views with a consistent appearance at various view
angles, given a set of images of 3D scenes and a style target(a
style image or another set of images of 3D scenes). Extensive
experimental results demonstrate the validity and superiority
of our method.
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