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StyleVR: Stylizing Character Animations
With Normalizing Flows

Bin Ji , Ye Pan , Yichao Yan , Ruizhao Chen , and Xiaokang Yang , Fellow, IEEE

Abstract—The significance of artistry in creating animated vir-
tual characters is widely acknowledged, and motion style is a crucial
element in this process. There has been a long-standing interest in
stylizing character animations with style transfer methods. How-
ever, this kind of models can only deal with short-term motions
and yield deterministic outputs. To address this issue, we propose a
generative model based on normalizing flows for stylizing long and
aperiodic animations in the VR scene. Our approach breaks down
this task into two sub-problems: motion style transfer and stylized
motion generation, both formulated as the instances of conditional
normalizing flows with multi-class latent space. Specifically, we
encode high-frequency style features into the latent space for varied
results and control the generation process with style-content labels
for disentangled edits of style and content. We have developed a
prototype, StyleVR, in Unity, which allows casual users to apply our
method in VR. Through qualitative and quantitative comparisons,
we demonstrate that our system outperforms other methods in
terms of style transfer as well as stochastic stylized motion gen-
eration.

Index Terms—Character animation, motion generation, style
transfer, normalizing flow, virtual reality.

I. INTRODUCTION

G ENERATING diverse and lifelike VR/AR character an-
imations has been a topic of interest for a long time.

Different approaches have been taken to tackle this challenge
[1], [2], including the development of animation systems such
as Motion Doodles [3], Spatial Motion Doodles [2] and ARAn-
imator [1], which aim to create characters in the virtual scene.
However, these methods all need sophisticated procedures to
control the interaction between characters and rough terrains
of the virtual environment. Additionally, there is still a signif-
icant gap between characters with high-dimensional motions
and 3-DoF or 6-DoF action control strategies, which remains
under-explored. Consequently, creating compelling animations
can be both time-consuming and costly.
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In order to improve the laborious manual processes, a promis-
ing and attractive option is to apply deep neural networks. Some
success has been achieved by PFNN [4], NSM [5] and Local
Motion Phases [6] in realizing lifelike human movements and
precise scene interactions. However, these methods mainly focus
on the motion qualities, leading to the synthesis of quasi-periodic
motions.

Recently, the advancement of generative models, such as
MoGlow [7] and MotionVAE [8], has opened up a new paradigm
for synthesizing characters conditioned on high-level control
signals like game-pad inputs or trajectories. Given the same
path, unlike deterministic models that tend to regress to the
mean pose and field a single predicted motion, generative models
can produce diverse motions on each invocation due to their
probabilistic nature. However, these methods do not take style
into account and fail to meet users’ demands for personalized
motion generation.

Animation styles refer to the personal style, such as Mickey
Mouse or the action’s expression level (exaggerated or artistic).
Recently, there has been an increasing interest among novice
users to generate animated virtual characters of different styles.
To add the style attribute to the process of motion synthesis,
some ideas of image style transfer techniques have been im-
plemented into the character animation domain: parameterizing
and manipulating the style features of an existing motion clip
rather than making a new one frame by frame from scratch.

Early methods of motion style transfer use handcrafted fea-
tures [9], [10] or physics-based representation [11] to manipulate
the style of a given animation. Since the style eludes a precise
definition, inferring style features with data-driven models is
more appropriate. Today, deep learning methods have been
introduced to automatically extract style features and combine
them with other motion contents [12], [13], [14]. However, most
of these methods require paired training data, which means
a tedious process of data collection where actors must per-
form the same motion cycle in different styles with identical
steps.

Recently, Aberman et al. [15] have presented a framework that
can learn styles from unpaired motion clips. This framework can
effectively disentangle even previously unseen style and content
features. However, for a given pair of input content and style
motion clips, the outputs of the deterministic model are short
of motion diversity. On the other hand, Wen et al. [16] make
use of a flow-based generative network that can be trained via
unsupervised learning over a collection of unlabeled motions.
Theoretically, unlabeled motions of different styles can be easily

1077-2626 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 09:55:11 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8981-5251
https://orcid.org/0000-0002-1447-6806
https://orcid.org/0000-0003-3209-8965
https://orcid.org/0000-0002-3056-0186
https://orcid.org/0000-0003-4029-3322
mailto:bin.ji@sjtu.edu.cn
mailto:whitneypanye@sjtu.edu.cn
mailto:yanyichao@sjtu.edu.cn
mailto:yanyichao@sjtu.edu.cn
mailto:stelledge@sjtu.edu.cn
mailto:xkyang@sjtu.edu.cn


4184 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

Fig. 1. Given a specific trajectory in VR scene, our proposed model can directly generate the animated characters with different styles. More details are shown
in the supplementary video.

captured in reality, which is crucial for generating high quality
motions.

However, unlike temporally-invariant image style features
[17], the motion style contains not only low-frequency features
(category information) but also time-varying high-frequency
features within each category. When editing the style features
of the animation clip, only the high-frequency component need
to be modified, rather than the low-frequency component that
remains constant over time. So the above two methods have
a significant drawback in that they only disentangle style and
content and do not further implement fine-grained disentangled
edits of high and low frequency style features. This results in
deterministic and short-term results.

In this article, we treat animation stylization as a conditional
generative task. First, we decompose style features into high
and low frequency parts and encode high-frequency features
into the latent space for diverse motion sampling. Then we
utilize style-content disentangled editing to ensure rationality
during the long and aperiodic motion. Specially, we investigate
animation stylization from two aspects: i) motion style transfer,
transforming the style features while retaining the content details
in a portion of the trajectory; ii) stylized motion generation,
transforming the style labels while retaining the content labels
in most of the trajectory.

Technically, with the help of normalizing flows, we propose
a novel architecture named Flow Student’s t Mixture Model
(FlowSMM) to construct the invertible transformation between
motion clips and style latent codes. FlowSMM models the
probability density of the latent distribution as a Student’s t
Mixture Model (SMM). Each mixture component of SMM
encodes style features of a certain class. The latent codes within
a certain component have the same low-frequency features
(category of style) and different high-frequency features. When
the style-specified motion is generated by drawing a random
sample from the corresponding component of SMM, we can
keep the low-frequency features consistent and only change the
high-frequency features, resulting in various plausible stylized
motions. Considering the limited dataset, we choose SMM,

which is robust to the small dataset, rather than Gaussian Mixture
Model (GMM) as the latent distribution. Furthermore, to make
the content-style attributes of the prolonged acyclic animations
editable, FlowSMM treats content-style labels as external con-
ditional priors. In terms of the module details, the actnorm layer
[18] in the invertible nonlinear transformation is improved as
a learnable multi-actnorm layer to overcome the problem of
overfitting. The local self-attention mechanism is adopted to
reduce the time complexity of the transformer module from
O(T 2) to linear O(T ).

To the best of our knowledge, FlowSMM is the first to realize
disentangled edits of style and content while keeping the motion
synthesis probabilistic, and solve the two problems of motion
style transfer and stylized motion generation. In order to further
demonstrate the great potential of our model in VR scenes,
we designed a prototype called StyleVR in Unity. As shown
in Fig. 1, after the process of trajectory drawing, StyleVR
can directly generate stylized animations of different styles.
Experiments show that our system outperforms state-of-the-art
methods in motion style transfer and stylized motion generation.

In summary, our contributions are threefold:
� We develop a novel prototype called StyleVR in Unity to

solve two style-related problems: motion style transfer and
stylized motion generation.

� We introduce a probabilistic model that develops the dis-
entanglements of style and content as well as high and low
frequency style features.

� The extensive experiments demonstrate that FlowSMM
surpasses state-of-the-art methods in motion style transfer
and stylized motion generation.

II. RELATED WORK

A. Character Animation

Character animation in VR/AR scenes is a booming research
area. Considerable attention has been paid to this direction to
create and edit animated characters in virtual environments.
Recently, Vogel et al. [19] explore the field of VR animation
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with a mind-blowing tool: AnimationVR. Then, Pan et al. [20]
present the PoseMMR, which allows multiple users to perform
immersive animation editing in an AR environment. Besides,
much care has been taken into the field of accessibility and
portability. Motion Doodles [3] pioneer this field and use 2D
curves with 2-DoF gestures to create animated character. Lock-
wood et al. [21] first control virtual characters on a virtual
plane with the sensor data of a mobile phone. Recently, the 3D
extension of Motion Doodles: Spatial Motion Doodles [2] is
proposed to draw 3D trajectory doodles and guide animation
generation with 3-DoF gestures.

In order to generate convincing character animation condi-
tioned on simpler control signals like trajectories in VR/AR
scenes or game-pad inputs, there has been a growing trend
towards data-driven approaches. The PFNN [4], for example,
uses a global phase variable to animate human locomotion.
Then MANN [22] replaces the handcrafted phase function
with a gating structure for quadruped motion control. Addi-
tionally, the NSM [5] uses the gating network from MANN
to generate interaction motions. And local motion phase in
[6] is utilized to achieve motion interactions with dynamic
objects. In order to make the generation process more con-
trollable, Holden et al. [23] improve the Motion Matching
algorithm with the scalability of neural-network-based models.
Starke et al. [24], propose the Periodic Autoencoder that trans-
forms unstructured character motions into a periodic manifold in
an unsupervised manner. Mason et al. [25] realize real-time style
modelling based on local motion phases. However, none of these
approaches take probabilistic animation synthesis into account.

Recently, generative models have emerged as a promis-
ing solution for increasing motion flexibility. Many GAN-
related works and adversarial training strategies [26], [27],
[28] have been implemented for motion generation. VAE-based
approaches have also gained recent interest. Ling et al. [8]
propose MVAE to avoid posterior collapse and balance mo-
tion quality against generalization. Petrovich et al. [29] utilize
CVAE combined with a transformer for multimodal motion
synthesis. Meanwhile, Henter et al. [7] propose a different
type of generative model based on normalizing flow, which
allows for invertible inference and tractable probability compu-
tation. Alexanderson et al. [30] extend this work by generating
attribute-controllable gesture animation and edit some concrete
attributes like hand height, speed, and gesticulation radius with
the flow-based model. However, none of the above-mentioned
methods consider the motion style. Therefore, we propose a
novel solution based on a normalizing flow model to control
both style and content.

B. Motion Style Transfer

The concept of transferring features from the source to the tar-
get has been applied in many fields, such as image style transfer
[31], face swapping [32] and motion Reenactment [33]. In this
section, we introduce how to manipulate the styles of motions.

Early studies of motion style transfer rely on intricately
crafted features to represent styles [10], [34]. However, since
the concept of “style” lacks a precise definition, it is logical to

explore statistical learning methods and learn style features from
data. For instance, Hsu et al. [35] model the stylistic variances
with a linear time-invariant model. Taylor et al. [12] employ a
Conditional Restricted Boltzmann Machine to capture diverse
motion styles. Xia et al. [13] construct a series of local mixtures
of autoregressive models to depict the interrelationships between
different styles.

Recent works [15], [36], [37] have incorporated ideas from
image style transfer and image recognition. For example,
Holden et al. [36] propose a convolutional autoencoder frame-
work that can transform the style in the space of the motion
manifold. Du et al. [37] further improve the method by replacing
the optimization procedure with a neural network. Recently,
inspired by the concept of Adaptive Instance Normalization
(AdaIN) [31], Aberman et al. [15] disentangle style features from
motions and inject them into the generation process with a tem-
porally invariant AdaIN. However, the model may not perform
well when dealing with styles that are significantly different from
those in the training dataset. Meanwhile, Wen et al. [16] firstly
introduce the generative flow model for motion style transfer,
which disentangles style and content more smoothly. While their
unsupervised method can be trained on unlabelled motion data,
it may not allow for frequency-based fine-grained disentangled
edits of style. In this article, we model the latent space as an
SMM to solve the problem.

III. METHOD

In this section, we present our solution for style-based editing
using a flow-based model called FlowSMM. Fig. 2 shows an
instance of our model. Further information about the latent
distribution, flow architecture and training strategy is elaborated
below.

Motion Representation: We represent a character animation
clip P ∈ R

T×d as a sequence of poses with T frames. Each pose
xt at timestamp t is a vector of 63 dimensions comprising the
3D positions of 21 skeleton joints. We use the 3D position repre-
sentation for several reasons: 1). In the 3D Cartesian coordinate,
the representation of pose is continuous and can be interpolated
using simple linear operators. 2). We aim to keep the dimension
of the motion representation as small as possible to avoid the
issue of high data dimension and the small number of data
samples. Specifically, we use a root-relative coordinate system,
whose origin is the trajectory on the floor. The trajectory is
represented by a displacement sequence S ∈ R

T×3, where each
displacement signal dt ∈ R

3 contains the translational velocity
(Δxt,Δzt) and y-axis rotational velocity Δyt.

Style and Content Labels: To make the content-style attributes
editable, we use semantic labels represented as one-hot en-
coding. There are two reasons for this choice. Firstly, one-hot
encoding can remove the ambiguity of similar attributes such
as walking/jogging and happy/proud. Secondly, one-hot vectors
are easy to mark on the motions. In this way, the style and
content label for each frame can be represented as st ∈ R

Ns

and ct ∈ R
Nc , where Ns is the number of content classes, Nc is

the number of style classes.
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Fig. 2. The framework of stylized motion synthesis. Our proposed FlowSMM is bijective. In the training phase, following the solid arrow, the current pose xt is
inputted to FlowSMM to infer the latent vector zt, which is supervised to a SMM based latent distribution by means of Maximum likelihood estimation (MLE).
In the testing phase, following the dotted arrow, we first select our favorite style by sampling a zt vector from the corresponding distribution component and then
obtain the reconstructed pose xt via the reversed FlowSMM process. Both the training and testing are conditioned on the motion context (the concatenation of
previous poses [xt−τ :t−1], style label [st−τ :t], content label [ct−τ :t] and the displacement [dt−τ :t]).

A. Generative Flow Models

The normalizing flow [38] is a flexible generative model for
density estimation, defined as an invertible and differentiable
transformation f : Z → X from a latent distributionZ modeled
as pZ to the real and complex data distribution X . In this way,
a data sample x ∈ R

63 (with subscript t omitted for brevity)
can be generated as x = fθ(z), where z ∈ R

63 is a random
variable from the latent distribution z ∼ pZ . The function fθ
is a bijection, which enables both efficient sampling and infer-
ence. In particular, the inference from x to z is achieved by
z = f−1

θ (x) = gθ(x). For brevity, we omit subscript θ in the
following paragraphs.

To construct the transformation f , flow-based models [18],
[38], [39] combine K steps of nonlinear transformations
{fk}Kk=1 together:f = f1 ◦ f2 ◦ ... ◦ fK and parameterize them
with θ = {θk}Kk=1. Therefore, z can be transformed to x by f .
The relationship between x and z can be defined as follows:

z = zK
fK→ zK−1

fK−1→ ...
f2→ z1

f1→ z0 = x, (1)

x = f(z) = f1 (f2(...fK(z))) , (2)

z = f−1(x) = f−1
K

(
f−1
K−1(...f

−1
1 (x))

)
. (3)

Such a sequence of equation (3) is called a normalizing flow
[38]. Using the change of variables theorem [40], the probability
density function of x can be written as

pX (x) = pZ(z) ·
K∏

k=1

∣∣∣∣det
(

∂zk
∂zk−1

)∣∣∣∣ . (4)

In order to train the parametric model, it is typical to perform
maximum likelihood. The log-likelihood of the probability den-
sity function of x is given by

log pX (x) = log pZ(z) +
K∑

k=1

log

∣∣∣∣det
(

∂zk
∂zk−1

)∣∣∣∣ , (5)

where the value log |det( ∂zk
∂zk−1

)| is the log-determinant of the

Jacobian matrix ∂zk
∂zk−1

. The Jacobian-determinant computation

takes a time cost of O(D3), which is intractable for large input
dimension D. In order to reduce the computation complexity,
a highly efficient transformation f has been designed to facil-
itate the calculation of the Jacobian determinant. While much
attention has been paid to the model design, the problem of
sampling the style latent codes {zt}Tt=1 with the same style label
but different high-frequency features from the latent spaceZ and
synthesizing stylized animation xt is still under-explored. Our
solution will be described in the following subsection.

B. Flow Student’s t Mixture Model

Here we propose the Flow Student’s t Mixture Model
(FlowSMM), a conditional probabilistic model for stylizing
character motion. In FlowSMM, we denote the style label with a
discrete variable y ∈ {1, . . . , C}. The latent space, conditioned
on a label i, is modeled as a fat-tailed multivariate t-distribution
with μi and Σi

pZ(z|y = i) = tν(z|μi,Σi), (6)

where the scalar ν > 0 is called the degrees of freedom.
The marginal distribution of z is a Student’s t mixture model

pZ(z) =
C∑

i=1

πitν(z|μi,Σi), (7)

we hypothesise that all categories of styles have the same pro-
portion and set each mixture coefficient πi =

1
C .

Combing equations (4) and (6), the style-class-conditional
likelihoods of x is

pX (x|y = i) = tν(z|μi,Σi) ·
K∏

k=1

∣∣∣∣det
(

∂zk
∂zk−1

)∣∣∣∣ . (8)

Student’s t Mixture Model: To encode different kinds of style fea-
tures into the latent space, we formulate the probability density
of the latent distribution as a mixture model. Previous work of
Izmailov et al. [41] employs a GMM as the latent distribution
of the flow model. Then Alexanderson et al. [42] explore the
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Fig. 3. Illustration of the FlowSMM architecture. FlowSMM consists of K
flow steps. Each flow step contains three subsections: actnorm, invertible 1 × 1
convolution and affine coupling layer. We improve the actnorm module into a
multi-actnorm module to mitigate overfitting. Moreover, the local self-attention-
based transformer is imposed into the affine coupling layer to optimize the time
complexity from O(T 2) to O(T ).

statistical robustness of the flow model with the fat-tailed t-
distribution. In this article, we aim to implement FlowSMM on
the small dataset where limited motion data often fails to capture
the full diversity of the real motion distribution. If the latent
distribution cannot account for outliers in the motion distribu-
tion, these outliers will adversely affect the process of maximum
likelihood. Therefore, we mitigate the impact of these outlying
data points by selecting t-distributions as the components of the
mixture model and using SMM as the latent distribution.

Mean and Covariance Choices of t-Distribution: Previously,
flow models used the Gaussian-based latent distribution with
a simple density z ∼ N (0, I). While in the case of SMM, the
means and covariances are relate to the proportions of different
kinds of styles. In this article, we draw the mean vectors μ of
each component randomly from a standard normal distribution
μi ∼ N (0, I) and keep their covariance matrices as identity. The
mean setup can be attributed to the fact that the dimension of
the pose is D = 63. Due to the curse of dimensionality [41],
mean vectors of different components are almost orthogonal to
each other, and their distances are about

√
2D, which keep mean

vectors apart from each other in the latent space regardless of the
number of style categories. On the other hand, the covariance
matrix of each mixture component measures the distribution
magnitude of the style. A larger magnitude indicates a higher
likelihood that this type of style feature will be selected during
random sampling time. Therefore, we fix the covariance matrices
as identity because of our above assumption that all style classes
have the same proportion.

Flow Architecture: In this section, we elaborate more details
about the architecture of our model. As illustrated in Fig. 3, each
flow step of transformation gθ(·) consists of 3 parts: actnorm,
invertible 1 × 1 convolution and the affine coupling layer.

Actnorm is a type of operation that works similarly to batch
normalization, which functions as an affine transformation z′ =
x−μ
σ with the mean μ and standard deviation σ of an initial

batch of data to alleviate the problems of deep model training.
However, to better clarify the inter-class boundaries between
different types of style features, multi-actnorm layer is proposed
for multi-class data-dependent initialization [43]. The data from
each style will share the same μ and σ. Moreover, we treat μ
and σ as trainable parameters during the following training steps
to realize a data-independent learning process. In the section V,

experiments demonstrate the critical role of multi-actnorm in
handling model overfitting.

Following the multi-actnorm lies an invertible 1× 1 convo-
lution layer for the permutation of the channel variables, which
performs a linear transformation denoted as z′′ = W · z′, where
W ∈ R

D×D. Similar to Glow [18], we factorize W in the form
of LU-decomposition to compute the Jacobian determinant in
linear time. Some elements of L and U are set trainable during
the training.

As mentioned above, pose xt has editable style and content
attributes. Meanwhile, it should also follow the trajectory on
the floor and maintain continuity with previous poses. As a
result, xt is conditional not only on its style label st and content
label ct but also on the previous poses [xt−τ , xt−τ+1, . . . , xt−1]
and displacements [dt−τ , dt−τ+1, . . . , dt] like a Markov chain
of order τ , which can be formulated mathematically as

pX (xt|st, ct, xt−1:0, dt:0) = pX (xt|st, ct, xt−1:t−τ , dt:t−τ ).
(9)

Therefore, we take inspiration from [7], [30] and incorporate
a transformer structure [44] in the affine coupling layers to
enable conditional intervention during the generation process.
The transformation xt = f(zt) should be modified to

xt = f(zt, st, ct, xt−τ :t−1, dt−τ :t). (10)

As is shown in Fig. 3, the coupling layers affinely transform
half of the input z′′hi based on the other half z′′lo. To remain
tractability when performing reverse calculation, z′′lo is left un-
changed. Specifically, we first split the input into two halves as
[z′′lo, z

′′
hi]. Then, we perform the following transformations as

z′′′hi = (z′′hi + t)� s, (11)

t, s = F(z′′lo, st, ct, xt−τ :t−1, dt−τ :t), (12)

where the transformer F feeds the combined context of st,
ct, [xt−τ :t−1] and [dt−τ :t] as the additional inputs to extract
transformation parameters t and s.

Wen et al. [16] first introduces the transformer structure into
flow model, which outperforms the RNN-based MoGlow [7] by
utilizing attention mechanism to construct long-range tempo-
ral receptive field and enable parallelizable training of multi-
frame poses. However, its quadratic time complexity O(T 2)
with respect to pose length T limits its application due to
excessive memory consumption [45]. Inspired by the work of
Huang et al. [46], we modify the global self-attention mechanism
into a local self-attention mechanism by restricting the position
connections within τ previous elements per layer to reduce the
time complexity to O(T ), where τ is much smaller than T. This
improvement align with the above Markov assumption and the
intuition that the nearest neighbors’ context has a significant
impact on the current pose. In this way, we optimize the training
process in an efficient and time-saving way.

C. Solutions to Sub-Problems

In this section, we present our solutions for two problems:
first, motion style transfer, which involves transferring user-
specified style features to the given character animation while
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Fig. 4. Illustration of the style transfer. Maintaining the motion content of the
content input, we can extract style latent codes from style input to transfer style
during the generation process.

preserving the content features of this animation; second, styl-
ized motion generation, which aims to produce probabilistic
stylized motions with more relaxed constraints. Hence we trans-
fer only the user-specified style labels to the given character
animation while preserving the content labels of this animation.

Motion Style Transfer: The objective of this task is to edit
style features of content input to match those of style input
while preserving the content features of content input. Given the
content input {x1

t}T1
t=1, {d1t}T1

t=1, s1t , c1t and style input {x2
t}T2

t=1,
{d2t}T2

t=1, s2t , c2t , we first project {x2
t}T2

t=1 into the latent space to
obtain {z2t }T2

t=1, and then invoke the mapping function f with
the form f(z2t , x

1
t−τ :t−1, d

1
t−τ :t, s

2
t , c

1
t ), which can be written as

z2t = f−1(x2
t , x

2
t−τ :t−1, d

2
t−τ :t, s

2
t , c

2
t ), (13)

xt = f(z2t , x
1
t−τ :t−1, d

1
t−τ :t, s

2
t , c

1
t ). (14)

The process is illustrated in Fig. 4, and the content input is
modified by the style input and evolves to a stylized motion
clip.

Stylized Motion Generation: There are some limitations when
editing motion clips with style transfer: i) the content input is
modified by the specific style code, resulting in a determin-
istic output; ii) ignoring the impact of the newly added style
on the content and displacement results in short-term motion
generation.

To overcome these limitations, we propose a scheme of styl-
ized motion generation, as depicted in Fig. 2. The first step
involves sampling the new style feature zt from the mixture
component tν(μ2, I) that corresponds to the style class of s2t .
Next, we replace s1t with s2t and the original d1t−τ :t is substituted
with a new displacement sequence d12t−τ :t that matches well with
the new style-content pairs. Details of d12t−τ :t will be explained
in Section IV-A. Finally, we obtain the pose xt of each mo-
ment with a learned nonlinear transformation f , which can be
formulated as:

xt = f
(
zt, x

1
t−τ :t−1, d

12
t−τ :t, s

2
t , c

1
t

)
and zt ∼ tν(μ2, I),

(15)

D. Training Objectives

Based on the (8), we have access to the likelihood for labeled
data. Then we can train the FlowSMM by minimizing the
negative log-likelihood loss

Lnll = −
T−1∑
t=0

log p(xt|yt), (16)

While Lnll guarantees motion diversity, it does not provide
sufficient guidance for motion continuity. To address this, we
propose a new loss function Lcon to supervise motion continuity.
After obtaining the latent code z of x through the forward
transformation, we sample a new z′ with the same style label
as z and generate the corresponding x′ through the reverse
transformation. The motion continuity loss is as follows:

Lcon =
T−1∑
t=1

||xt − xt−1 − x′
t + x′

t−1||1 (17)

The intuition behind Lcon is that joint positions, rather than
velocities, reflect motion diversity. And that enforcing velocity
constraint can help maintain the same low-frequency features
between x′ and x, such as the position of the standing foot joint
while keeping high-frequency features as different as possible,
such as the positions of high-speed end-effectors. Finally, our
loss function is as follows:

L = λ1Lnll + λ2Lcon (18)

E. Implementation Details

For FlowSMM, the number of flow steps isK = 16, the order
of the Markov chain is τ = 10 and degrees of freedom is ν = 50.
The Transformer in each coupling layer consists of 2 identical
layers. Each layer has 2 blocks: a local self-attention block with 8
heads followed by a position-wise fully connected block. During
training, the weight of Lnll and Lcon are λ1 = 1 and λ2 = 24.
We use the Adam solver and train with a batch size of 128. The
learning rate is initialized to lr = 10−4 and decreases linearly to
5× 10−5 at the 6000th step. Our implementation is in PyTorch.

IV. STYLEVR SYSTEM

Based on FlowSMM, we developed a prototype system called
StyleVR to help users stylize their VR animations automatically.
Additionally, StyleVR considers postprocessing to address is-
sues such as motion jitters and foot skating. The processing
pipeline for transforming a trajectory doodle into a stylized
animation consists of three steps: editing, animating and post-
processing.

A. Editing

Trajectory Drawing: Existing VR/AR animation creation
systems utilize an operable medium within the VR space to
produce animations [1], [2]. Our system operates in a similar
way, allowing users to draw their desired path in the Unity
with the VR controllers. As illustrated in Fig. 5(a), we use the
controller as an emitter for ray casting, and the trajectory is
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Fig. 5. Overview of the proposed StyleVR system. Novice users can generate stylized animations using StyleVR by following the steps of: (a) drawing a trajectory
with VR controller; (b) designing gait states for the trace; (c) choosing their favorite styles; (d) generating stylized joint locations with FlowSMM; (e) transferring
poses to the avatar with motion retargeting; (f) coping with artifacts like motion jitters and foot sliding.

formed by the points of intersection on the XZ-plane, which are
sampled at 60 HZ.

Velocity Design: Once the track has been drawn, a displace-
ment sequence {dt}Tt=1 must be designed along the path. As
mentioned in Section III-C, {dt}Tt=1 need to be consistent with
the style-content pair. Since many contents have similar speeds,
{dt}Tt=1 is designed based on style-gait pairs. Initially, certain
gait states are defined, including 3 “constant” states with differ-
ent periodic speeds: “idleness”, “walking” and “running”, along
with 3 “acceleration” and 3 “deceleration” states for transitions
between different “constant” states. In this way, users only need
to design the “constant” states, and the system will complete
the “acceleration”/“deceleration” states automatically. In this
article, we use the small dataset presented by Aberman et al. [15],
which only contains the motion states of “idleness”, “walking”
and the corresponding “acceleration” and “deceleration”. We
make a dictionary with motion styles and states as keys and
the typical speed samples from the dataset as values. As shown
in Fig. 5(b) and (c), we design states and choose the style and
content labels for the trace. Then we query the dictionary for the
dt according to the relation dt = φ(style, state, t).

B. Animating

Generating: As shown in Fig. 5(d), FlowSMM allows users
to synthesize stylized motions with inputs of velocities {dt}Tt=1,
style features {zt}Tt=1, style label st and content label ct. For
demonstration, there are 6 styles included in the current imple-
mentation: “angry”, “depressed”, “drunk”, “happy”, “lazy” and
“neutral”.

Motion retargeting: Motion retargeting is necessary for trans-
ferring the stylized motion to an animated avatar. As the mo-
tion representation of FlowSMM is based on 3D positions,
we convert positions into rotation matrices and apply these
rotations to the virtual avatar. A joint rotation R ∈ SO(3) can

be decomposed into a swing rotation and a twist rotation. While
the twist rotation rotates around the bone vector and cannot
be calculated analytically, it is set to a default value. For the
swing rotation, once the start vector 	s and target vector 	t of a
bone are determined, the swing angle θ between 	s and 	t will

satisfy the conditions: sin θ = ‖�s×�t‖
‖�s‖‖�t‖ and cosθ = �s·�t

‖�s‖‖�t‖ . And
the closed-form solution of the swing rotation matrix can be
obtained using the Rodrigues formula

Rswing = I + sin θ[	n]× + (1− cos θ)[	n]2×. (19)

Where I is the 3× 3 identity matrix, 	n is the unit normal
vector of 	s and 	t and [	n]× is the skew symmetric matrix of 	n.

Finally, with the avatar rest pose template T and the relative
rotations R, we are able to compute the reconstructed pose P
in real time through the process of Forward kinematics (FK) in
Unity.

C. Postprocessing

Since our model is trained on the limited dataset and tested
with various trajectories, it is inevitable to generate some no-
ticeable visual artifacts such as motion jitters and foot sliding.
Subsequently, we will discuss the issues of foot sliding and
motion jitters.

Motion jitters: In regards to motion jitters, we find that most
outlying observations produced by FlowSMM are related to
joints of left/right hands. To achieve temporally smooth hand
motions, we first represent left/right hand joints relative to their
parent nodes (left/right elbow) and then apply Gaussian filters
to smooth out the values. The window size of Gaussian filters is
set to 3.

Foot sliding: In order to address the issue, Aberman et al. [15]
adjusted the foot contact positions based on the extra content
motion, while Xia et al. [13] utilized the detected foot plant
constraints to the artifacts.
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Algorithm 1: Alleviate Foot Sliding.

In Section IV-A, we have avoided severe foot sliding through
velocity design. To further eliminate the slight foot sliding
artifacts, we identify the left/right feet as end-effectors and de-
termine if they are stationary or in motion. Then we average the
positions of “standing” end-effectors and use the modified end-
effectors in the inverse kinematics (IK) process to fine-tune the
positions of other joints. The pseudocode of Algorithm 1 is pro-
vided below, which is applied to the left/right feet respectively.

V. EXPERIMENT AND EVALUATION

A. Datasets

For training and quantitative evaluation, we utilize the dataset
provided by Aberman et al. [15], which contains motion se-
quences of 16 styles. This dataset is considered ‘tiny’ due to the
short duration of the motion sequence, which is only 5–6 minutes
per style. By contrast, the mainstreaming dataset, such as CMU
MoCap for action tasks, contains 204079 frames for 8 actions
(35 mins per action). Additionally, some previous works on
motion style transfer [47], [48] still take small datasets into
account. Yumer et al. [47] use the smallest dataset, but their work
only focuses on style transfer. The dataset of Mason et al. [48] is
larger than ours since they first need a large dataset to train the
motion generation module and then use an extra small dataset
to train the style-related module.

We first downsample the dataset from 120 fps to 30 fps. This
is done because the input of FlowSMM includes the previous
poses of τ frames, and we want to expand the receptive field
of the limited τ frame poses while avoiding the problem of
high data dimension and the small number of data samples.
Then for further batch processing, we split the dataset into
fixed-length clips of T = 64 frames with an overlap of T/8.
In this way, we have access to 12549 motion sequences. Each
style’s sequences are divided into two disjoint subsets, with the

Fig. 6. Quantitative evaluation of latent distributions. The training losses of
GMM and SMM are of similar trends. Nevertheless, the gap between validation
losses keeps increasing over time, indicating the superiority of Student’s t
Mixture Model to mitigate overfitting.

smaller one (consisting of 10% of the samples) will act as the
test set. Moreover, in the training phase, the data is augmented
by lateral mirroring and motion reversing [7]. To calculate the
displacements, we map the hip motion to the floor and smooth
the trajectory with the Gaussian-filter. To reduce the difficulty
of regression, dt = (Δxt,Δzt,Δyt) is expressed in the form
of frame-wise delta-translation and delta-rotation relative to the
previous frame.

B. Ablation Study

To put the performance of FlowSMM in perspective, we
conduct thorough evaluations to assess the effectiveness of
both SMM and multi-actnorm layers. Specifically, we held
all other components constant and vary the latent distribution
ranging in GMM/SMM, as well as the actnorm layer ranging in
actnorm/multi-actnorm.

Student’s t Mixture Model: To demonstrate the effectiveness
of SMM, we compare the Lnll curves of Flow-GMM-actnorm
and Flow-SMM-actnorm. In the training phase, both models
show a similar decreasing trend in theirLnll curves, as illustrated
in Fig. 6. However, in the testing phase, their performance gap
becomes more pronounced over time. The Lnll of Flow-GMM-
actnorm starts to rise steeply early on and diverges linearly,
whereas Flow-SMM-actnorm performs much better but still
exhibit slight overfitting. In addition, we show several represen-
tative results of the two models in Fig. 7. The results indicate that
outputs of Flow-GMM-actnorm are not competitive, while the
motion sequences produced by Flow-SMM-actnorm are more
realistic and lifelike.

The main cause of the behavior can be attributed to insuffi-
cient training data. This limits the GMM to learn the complete
motion diversity and leaves it vulnerable to outliers, ultimately
resulting in low-performance generations. In contrast, the SMM
is resistant to outlying data points because it models the latent
probability distribution with a fatter-tail structure, leading to
greater training stability and further improving generalization
results of FlowSMM.

Multi-actnorm layer: Although the Flow-SMM-actnorm pro-
duces impressive visual results, it tends to overfit in terms of
Lnll on testing data. One intuitive explanation is that outliers in
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Fig. 7. Qualitative comparison of Flow-GMM-actnorm to Flow-SMM-actnorm. Snapshots of two representative stylized results show that FlowGMM is prone
to field artifacts (marked with red circles), while SMM has a decisive effect on the FlowSMM to learn the motion diversity of natural behavior and the generations
of FlowGMM are more lifelike.

Fig. 8. Quantitative evaluation of actnorm layers. From the loss results of
different actnorm layers, it can be seen that both training and validation losses
decrease more monotonically by imposing our proposed multi-actnorm layer
than the other set of common actnorm layers.

the dataset do not amount to errors but uncommon data points.
When we want to reduce the impact of outliers on the parameter
estimates, the model tends to “give up” some particular samples
and instead focuses on fitting the majority, albeit at the expense
of the diversity in synthesized motions. As a result, the learned
model regards some testing examples as unnatural outputs,
resulting in overfitting.

To enhance the style diversity of the model without compro-
mising its statistically-robust fitting strategy, we instead take the
layer of activation normalization into account. Our solution is
to propose a multi-actnorm layer that allows each style of data
to share the same scale and bias parameters. These parameters
capture the typical style feature of the batch rather than that
of individual data points, which are more stable and easier
to learn. As shown in Fig. 8, testing with the actnorm layer
fails to converge, while testing with the multi-actnorm layer is
stable, thereby addressing the problem of overfitting. Moreover,
it further improves the training process of FlowSMM.

C. Comparative Performance

In this section, we evaluate FlowSMM in two aspects: (i). the
ability of style transfer; (ii). the quality of generated actions.

In order to give an intuitive visualization of how the model en-
codes style features, we compare FlowSMM with two state-of-
art methods developed by Aberman et al. [15] and Wen et al. [16].
Specifically, we extract the style codes of 6 styles from motion

TABLE I
COMPARISON RESULTS WITH OTHER METHODS

clips and project these codes onto a 2D embedded space using
t-distributed stochastic neighbor embedding (t-SNE) [49], with
each style’s samples marked with the same color. Fig. 9 demon-
strates the comparison results of all three models. It can be seen
that Wen’s approach produces blurry boundaries between dif-
ferent styles, resulting in small, distinct clusters for the “happy”
and “lazy” styles, while samples with “neutral” labels visibly
mixed with other styles, which is consistent with common sense
that unsupervised methods like wen et al. [16] are not suitable
for style learning and need labels for better learning. On the
other hand, Aberman et al.’s approach, which uses supervised
learning with style labels, can cluster samples based on style, but
still have some “asocial” anomalies that could interfere with the
effectiveness of style transfer during the AdaIN transformation
step. However, our proposed FlowSMM performs best in style
clustering, with the highest intra-class similarity and lowest
inter-class similarity. The reason for this is that FlowSMM
not only makes use of style labels but also designs a latent
distribution of SMM for style codes to cluster into. The settings
of means and covariances discussed in Section III-B are also
supported by results in Fig. 9(c).

To quantitatively analyze the impact of style transfer, we use
silhouette coefficients (SCoeff) [50] to measure the separation
distance of the style encoding clusters. The SCoeff scale ranges
from −1 to +1, with higher value indicating that the sample is
well matched to its own cluster and apart from other clusters.
As shown in Table I, our analysis shows that the combination
of style labels (Aberman et al. [15], FlowSMM) and a well-
designed latent space (FlowSMM) account for high values of
SCoeff. Additionally, Wen et al. [16] proposed a metric of style
consistency (SC) to evaluate the effectiveness of style transfer,
which is based on the observation that if content input and style

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 09:55:11 UTC from IEEE Xplore.  Restrictions apply. 



4192 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

Fig. 9. The visualization of style latent space. Style codes extracted from the motion clips with the methods of Wen et al. [16] (a), Aberman et al. [15] (b) and
FlowSMM (c) are evaluated on the 2D embedding space using t-SNE. It can be seen that style representations extracted by the unsupervised learning method
(a) can not be clustered properly. While the use of style label (b) count for the learning of style codes, and well-designed latent distribution (c) can further improve
the clustering results of latent codes.

Fig. 10. The representative case. The style input is about “drunk walking”, and the content input is about “angry punching”. From the details of head pose,
punching force and gait, it can be seen that our result is more like a “punching drunkard”. The full video can be found in the supplemental video.

input share the same content label, the results after style transfer
should be close to the input style. Therefore, SC is defined by
computing the Euclidean distance between the stylized motion
and the content input. To make the SC unaffected by the prob-
abilistic nature of the generative model, we further keep the
length of the test sequence as 160 frames. The results in Table I
confirm that manipulating the motion features with temporally
invariant AdaIN parameters [15] may not work well. In contrast,
invertible transformations of flow-based models (Wen et al. [16]
and FlowSMM) can ensure the effectiveness of per-frame style
editing. Furthermore, FlowSMM can disentangle the high and
low frequency style features in the latent space, resulting in the
best performance.

We further present an illustrative example, in which we
created a character engaging in “drunk punching” by utilizing
the style input “drunk walking” and the content input “angry
punching”. The “drunk puncher” ought to exhibit behaviours
such as head shaking, weakly waving his fist and a slightly
unsteady footing. As is shown in Fig. 10, the result of FlowSMM
is more realistic.

To evaluate the quality of generated animations, we calculate
the motion continuity loss Lcon over a long trajectory. Results
presented in Table I demonstrate that FlowSMM outperforms
Wen et al. [16] in terms of continuity loss. The superiority of
FlowSMM can be attributed to its mixture-model-based latent
distribution, where we can sample style-specific latent code for
stylized motion generation. Although mixture model is difficult

to encode motion continuity, the loss function utilized in the
inverse transformation can effectively mitigate the problem.

Finally, we give some examples to visualize the style-content
disentanglement. As illustrated in Fig. 11, the avatar performs
the same content of putting something down while exhibiting
different styles, all while following the same trajectory.

VI. USER STUDY

20 students and staff (12 male) at Shanghai Jiao Tong Uni-
versity were recruited to take part in our experiment, three of
them were professional animators. The average age was 23.5
(SD = 1.8).

A. Accuracy of Stylization

In this experiment, participants were instructed to watch an-
imations generated by FlowSMM and classify them into style
categories. Prior to the measured trial, each participant under-
took a practice trial to learn about various styles by watching
some ground-truth clips and could ask questions. Then they
undertook the test of 36 generated clips, with 6 clips per style.
Additionally, 12 ground-truth examples were included to ver-
ify the participants’ attentiveness. Participants who performed
poorly on these examples were asked to redo the test.

Classification accuracy is summarized in Fig. 12. Results
show that FlowSMM is capable of producing well-stylized
animations for most scenarios. Specially, the labels of “drunk”,
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Fig. 11. The visualization of style-content disentanglement. Following the same red trajectory, the avatar can perform the motion content of putting something
down at the similar place with different styles. More details can be found in the supplemental video.

Fig. 12. The confusion matrix of classification accuracy. Participants were
asked to recognize the style categories of the generated motions.

“angry” and “lazy” were always recognized as intended (95.8%
vs. 94.2% vs. 93.3%) due to their apparent characteristics (e.g.,
“lazy”: walking idly, “angry”: occasionally kicking or stomping,
“drunkard”: walking unsteadily). However, recognition failures
were more frequent for styles of “depressed” and “happy”
since their micro-expressions (e.g., “depressed”: drooping head,
“happy”: exaggerated body movements) were challenging to
learn with the limited data. Therefore, the “depressed” and
“happy” styles were often mistaken for “neutral” style (12.5%
vs. 13.3%). To address the issue, we will capture more stylized
motion data in future work.

B. Rationality of Generated Animations

We conducted two trials to assess the rationality of style
transfer and stylized motion generation using a within-subject
design. Each trial required participants to rate three groups of six
animations. For style transfer, animations were generated using
the same six pairs of content/style input motions but with three
different methods. For stylized motion generation, animations
were generated using the same six trajectories but with three
different methods. Participants who rated the MoCap clips low
(scores≤ 2) were asked to repeat the test. Content/style input
motions and trajectories were generated through random sam-
pling, and the presentation order of animations was randomized.
Evaluations were conducted using a five-point Likert scale, as
shown in Table II.

TABLE II
LIKERT SCALE MARKERS TO ASSESS THE RATIONALITY

Fig. 13. Responses on the motion rationality of style transfer. The results
showed the comparison among three methods based on the Likert scale.

As shown in Fig. 13, the works of Aberman et al. and
Wen et al. are not competitive. 15.8% and 22.5% of their re-
sponses were “slightly unsatisfied” with generated animations,
and even 5% of participants found Wen et al.’s results to be
“strongly unacceptable”. However, FlowSMM received only
3.4% “slightly unsatisfied” responses, and 65.8% of participants
were “satisfied” with its stylized results. This rating was higher
than the other two methods, which only received 50% and 45%
satisfaction ratings, respectively. The reason for this difference is
that Aberman et al.’s model treats style features as temporally in-
variant, making it less effective for non-periodic motions, while
Wen et al.’s approach modifies the per-frame style feature, re-
sulting in poor performance on long-term motions. By contrast,
FlowSMM not only considers local style of each frame but also
ensure the rationality of long-term motions with style-content
labels.

The evaluation of stylized motion generations is visualized in
Fig. 14. Our result was deemed acceptable (scores≥ 3) by 90.8%
of the respondents, which was lower than those of MoGlow
and MoCap (95.8% vs. 100%). However, FlowSMM received
higher scores for satisfaction (“Satisfied”: 44.2%, “Extremely
Satisfied”: 28.3%) compared to MoGlow (“Satisfied”: 18.3%,
“Extremely Satisfied”: 11.7%). The reason is that FlowSMM
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Fig. 14. Responses on the rationality of generated animations. The evaluation
compared the rationality of stylized motions with those of MoGlow and MoCap.

Fig. 15. Mean ratings of the user studies. Mean ratings with standard deviation
bars are calculated to evaluate the performance of models.

learns both style and content features to create lifelike and styl-
ized synthetic motions. Even if the latent space has been modeled
as SMM to improve training stability, occasional artifacts like
foot-sliding and jitter may occur due to limited motion data.
By contrast, MoGlow models its latent space as a Gaussian
distribution which can make its motions more plausible but less
stylized. Therefore, the animations of MoGlow can be more
plausible but barely stylized and 65.8% of the responses thought
animations of MoGlow “mediocre”. Furthermore, only 28.3%
of the responses were “extremely satisfied” with animations of
FlowSMM, compared to 49.2% of MoCap clips. This result
indicates that even if our generated animations are primarily ac-
ceptable, they still lack micro-expressions compared to MoCap
due to limited datasets.

Fig. 15 illustrates mean ratings of user studies. FlowSMM
received the highest rating for style transfer. However, there was
a gap between the results of FlowSMM and MoCap for stylized
motion generation. One-way repeated measures ANOVA and
post-hoc Tukey HSD test were performed to access statisti-
cal significance of these differences. Prior to these operations,
Kruskal-Wallis test and Bartlett’s test were conducted to verify
normality and homoscedasticity assumptions of ANOVA, and
the boxplot detected no data outliers. The results of ANOVA
show significant main effects of different models for both style
transfer (F(2,238) = 129.24, p < 0.001) and stylized motion
generation (F(2,238) = 191.66, p = <0.001). Then Tukey’s
HSD test revealed that, for style transfer, all differences between
models were significant (p < 0.001) except for the comparison
between the models of Aberman et al. [15] and Wen et al. [16]
(p = 0.019 < 0.05). For stylized motion generation, all differ-
ences between models are significant (p < 0.001).

VII. CONCLUSION

In this article, we propose FlowSMM, a flow-based model that
enables the probabilistic and controllable synthesis of stylized
animations. Given a specific trajectory in the VR scene, novice
users can directly sample the style codes from the SMM-based
latent space and generate the animated characters of the user-
specified style using invertible flow transformations. Specially,
FlowSMM achieves disentanglements of style and content as
well as high and low frequency style features, making it applica-
ble to style-related sub-problems: motion style transfer and styl-
ized motion generation. Moreover, FlowSMM imposes the local
self-attention mechanism into the transformer module to reduce
time complexity and applies learnable multi-actnorm layers to
relieve overfitting. We demonstrate FlowSMM’s robustness to
small datasets through experiments and showcase its application
potential with a prototype called StyleVR in Unity, including
details about the trajectory design, animation generation and
post-processing.

Experiments show that although the “Velocity Design” step
of FlowSMM could alleviate foot sliding artifacts, it may not be
effective in complex situations. In the future, we plan to draw
inspiration from the work of “Motion Matching” [23], and search
the motion database for the velocity which is best suited for the
given context. On the other hand, FlowSMM mainly deals with
the small dataset to evaluate its effectiveness in comparison to
the work of [15], [16]. We will further expand our research to
larger datasets such as 100STYLE [25] and LaFAN1 [51].
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