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Figure 1: Given an audio clip and a target emotion, EmoFace can generate talking heads with fully controllable emotions. This figure
shows generated facial animation using the same audio and different emotions.

ABSTRACT

Audio-driven emotional 3D face animation aims to generate emo-
tionally expressive talking heads with synchronized lip movements.
However, previous research has often overlooked the influence of
diverse emotions on facial expressions or proved unsuitable for driv-
ing MetaHuman models. In response to this deficiency, we introduce
EmoFace, a novel audio-driven methodology for creating facial
animations with vivid emotional dynamics. Our approach can gen-
erate facial expressions with multiple emotions, and has the ability
to generate random yet natural blinks and eye movements, while
maintaining accurate lip synchronization. We propose independent
speech encoders and emotion encoders to learn the relationship be-
tween audio, emotion and corresponding facial controller rigs, and
finally map into the sequence of controller values. Additionally,
we introduce two post-processing techniques dedicated to enhanc-
ing the authenticity of the animation, particularly in blinks and eye
movements. Furthermore, recognizing the scarcity of emotional
audio-visual data suitable for MetaHuman model manipulation, we
contribute an emotional audio-visual dataset and derive control pa-
rameters for each frames. Our proposed methodology can be ap-
plied in producing dialogues animations of non-playable characters
(NPCs) in video games, and driving avatars in virtual reality environ-
ments. Our further quantitative and qualitative experiments, as well
as an user study comparing with existing researches show that our
approach demonstrates superior results in driving 3D facial models.
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1 INTRODUCTION

The ever-expanding development of virtual reality technology has
led to a growing demand for the creation of virtual characters, and
it has become an indispensable part in many domains. By creating
avatars, we could put ourselves in a metaverse, and communicate via
avatars. This mode of interaction empowers individuals to engage
with others through avatar-mediated communication, thus bypassing
the necessity of physical presence. It brings several advantages,
including higher levels of anonymity and privacy, the opportunity
to engage in virtual environments that might not be possible in the
physical world. Furthermore, it has become a fundamental element
of interactive technologies, finding applications in diverse fields. For
instance, online virtual multiplayer games, social media platforms,
virtual assistants, virtual meetings, and various other domains.

However, paradoxically, as the demand for realistic generated
facial animations increases, people’s tolerance for imperfections in
the results diminishes, even in the case of subtle facial nuances. Even
the smallest imperfection can induce the uncanny valley effect in the
animated avatar, substantially decreasing its audience acceptance.

Traditionally, avatars can be generated through vision-based meth-
ods like face tracking, which have highly realistic outcomes. But a
significant challenge arises when the user wears a headset, making
the capture of facial expressions unfeasible. Under such circum-
stances, employing audio input as the foundation for generating
avatars becomes a more suitable approach. Generally speaking, ex-
isting researches on audio-driven facial animation generation can be
mainly concluded into three types:
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Video-based generation  Edits the video of the target character
to achieve audio and video synchronization [7,28,32,43,44];

Image-based generation Uses one or several facial images
as prototype for generation, and edited as a frame in the animation
[18,22,31,39,40];

Model-based generation Uses controller rigs or facial mesh
to drive the model or render facial animation [13, 14,29, 30, 33, 35];

Most previous studies focus on video-based and image-based
generation, and few studies focus on model-based generation ap-
proaches. However, in terms of game production, it is more appropri-
ate to use model-based approaches as the target characters appears
in the form of 3D models.

The primary challenge in this task stems from the fact that speech
audio includes more than just the phonemes of the spoken text.
It also contains cues related to facial expressions. Consequently,
a talking head should not only synchronize with the speech but
also convey the speaker’s emotional state through its expressions.
While there have been notable successes in the research on audio-
driven facial animation, the domain of multi-emotional generation
has seen relatively limited exploration. Moreover, a significant
proportion of existing datasets, such as MEAD [38], are primarily
based on English recordings, with an absence of datasets recorded in
Chinese. Considering that we mainly use Chinese in application, and
the substantial phonetic differences between Chinese and English,
employing models trained on English data for Chinese audio clips
can result in inaccurate facial animations. At the same time, the
current datasets appear in the form of pairs of audio and video, and
the complex mapping relationship between video and rig controller
values to drive 3D models is hard to be learned. Consequently,
the existing datasets cannot be directly utilized for model training.
To address this issue, we propose an audio-visual dataset recorded
in Chinese that contains seven different emotions. Through post-
processing, we have extracted the controller values corresponding to
each frames in the videos.

In addition to constructing the dataset, we also propose a fun-
damental face generation model tailored to this dataset, which can
be used for the facial generation in multiple emotions. This model
takes an audio clip and the desired emotion as inputs, producing cor-
responding controller values for each frame to drive the MetaHuman
model. However, given the relatively short duration of each record-
ing, the dataset contains few instances of blinks and eye movements.
Consequently, it becomes challenging to learn a robust correlation
between blinks, eye gaze and speech, potentially leading to unnatu-
ral details in the generated talking head. To address this issue, we
introduce independent blink and eye gaze control module. The blink
controller gains blinking frequency data from other datasets and
learns stochastic rules governing blinking behavior. Additionally,
the gaze controller generates subtle eye movements, enhancing the
naturalness of the facial animation.

This paper introduces EmoFace, a technology for driving virtual
characters using audio and emotion as input. The mainstream re-
searches can achieve good synchronization between input audios
and output lip motions. However, these animations typically lack
emotional expressions, with neutral face even when inputting emo-
tional audio clips. Furthermore, the generated images from these
methods are not suitable for driving virtual character models. To
address these limitations, we propose an approach that takes both
audio and emotional information as input and produces controller
values for driving MetaHuman models, thereby enhancing the preci-
sion of facial animation generation. The main contributions of this
paper are as follows:

* We construct a dataset recorded in Chinese with multiple emo-
tions, and extract the controller values of each frames;

* We propose a foundational model of audio-driven multi-
emotional generation of MetaHuman controller rigs. This

model offers the flexibility to control emotions and delivers
high-quality facial animation;

* We enhance the facial expression generation process by incor-
porating blink and gaze controllers, thereby achieving a more
natural and realistic outcome;

2 RELATED WORK
2.1 Audio-Driven Talking Face Generation

The aim of audio-driven talking head generation is to produce an
animation of the target character based on an audio clip while ensur-
ing accurate lip synchronization. Existing research can be broadly
categorized into three distinct types.

Some research works use GAN [16] to directly output talking
head videos. Song et al. [32] introduced a novel conditional recur-
rent generation network. It incorporates reference images and audio
signals into the recurrent unit to facilitate timing-dependent learn-
ing, thereby enhancing the temporal coherence of both images and
audio signals. This enhancement ensures seamless transitions in lip
and facial motion. Vougioukas et al. [36,37] employed a temporal
generative adversarial network (TGAN). Within their approach, a
generator features an encoder-decoder structure, combining raw au-
dio and individual reference images, while a sequence discriminator
is implemented to ensure the naturalness of the generated animations.
Wav2Lip [28] focuses on the synchronization of audio and mouth
shape in face generation. It takes audio and a video with masked
lower face as input. Then, a GAN is trained to fill the masked lower
face, and a lip-sync loss, computed by SyncNet [9], is employed to
guarantee the alignment of the generated faces with the audio. The
primary issue with GAN-based generation lies in its direct output
of facial images for each frame, thus unable to be migrated to drive
facial models.

Some studies focus on extracting phoneme from audio and learn-
ing the mapping between phoneme and viseme. JALI [13] extracts
phoneme sequence from text to animate the JALI rigs. Additionally,
the system utilizes audio signal as an auxiliary input to predict the
intensity of jaw and mouth movements based on audio features such
as volume, pitch, and formant information. Zhou et al. [45] made en-
hancements to the JALI system by introducing a separation between
the phoneme and landmark processes. Their approach involves the
combination of phonemes, landmarks, and audio features to generate
JA-LI parameter values and viseme information. However, these
approaches mainly focus on lip shapes and ignore the animation of
other parts of the face.

Some researchers try to learn the mapping between audio and cor-
responding facial controller values. Pham et al. [25-27] employed
spectrograms as audio features, with the outcome being unit inten-
sities corresponding to distinct facial regions. This is achieved by
employing separate convolution processes in both the frequency and
time domains. VOCA [11] utilizes a pre-defined character model
and audio features extracted by DeepSpeech [17] to generate facial
meshes corresponding to the character. FaceFormer [14] encodes
the long-term audio context using the pretrained wav2vec2.0 [3] and
employs a transformer decoder [34], with carefully designed atten-
tion masks. This allows for the automatic regression and prediction
of facial meshes. MeshTalk [30] aims to disentangle a latent space
of facial animation through a classification process. In this disentan-
gled space, audio-related information governs the lower face, while
audio-irrelevant information influences the upper face. While these
methods have achieved a commendable level of authenticity in their
results, they are constrained by the complex many-to-many mapping
relationship that exists between audio and facial expressions. This
direct mapping from audio to facial expressions may suffer from
over-smoothing, indicating that the output tends to converge towards
the mean value of similar examples within the dataset.

In the above researches, a notable limitation is the neglect of
emotional expressions, resulting in outputs that lack emotion and

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.



being neutral. Wang et al. [38] introduced the MEAD dataset, which
aims to create emotional talking faces by independently segmenting
the upper and lower parts of the face. Nevertheless, the animations
generated using this approach did not have a high level of naturalness.
Building upon the groundwork by MEAD, Ji et al. propose EVP
[19], which extends the integration of emotions into the synthesis
process. EVP utilizes time-aligned audio features in the form of
MFCC (Mel-frequency cepstral coefficients) from the same text
content under various emotional states during the training process.
Moreover, EVP introduces a disentanglement module that effectively
segregates content encoding from emotion encoding within the audio.
EmoTalk [24] further implement wav2vec2.0 in the disentanglement
module, making content and emotion further separated.

While most of the works focus on learning the mapping between
audio and facial expressions, FLINT [12] implements a VAE struc-
ture to learn facial motion priors. Although it could ease the problem
of high-frequency jitter and other unnatural motions, details like
blinks and gazes are ignored. Moreover, completing leaving aside
audio could possibly cause lack of movements.

2.2 Audio-Visual Dataset

Currently there are some high-quality audio-visual datasets, but most
of them do not consider emotional information. The LRW [8] is
an automatically collected and processed compilation of data from
British broadcast TV programs, offering a substantial diversity in its
content. However, the dataset’s inclusion of various roles and dis-
tinct individuals may introduce substantial interference, potentially
hindering the model’s ability to discern information that is irrelevant
from individuals. The VOCASET [11] contains voice-face 4D scans
from 6 female and 6 male subjects. 40 sentence fragments were
collected for each subject, and the speech diversity was maximized.

A small number of datasets consider audio-visual data under
multi-emotional conditions. The dataset of Fanelli et al. [15] com-
prises a total of 1109 audio sequences, with an average duration of
4.67 seconds. Each participant contributed audio-4D facial scanning
data of 40 spoken English sentences, and each sentence was recorded
on two occasions: once with emotional expression and once without.
MEAD [38] is a multi-view, multi-emotional audio-visual dataset
with different intensities. It is composed of 60 recorders with 8
different emotions. Each recorder within the dataset is associated
with approximately 40 minutes of video content, providing a rich
and diverse resource for research. EmoTalk [24] proposes a large-
scale 3D emotional talking face (3D-ETF) dataset including both
blendshape coefficients and mesh vertices. The dataset was based
on two 2D audio-visual datasets: RAVDESS [21] and HDTF [42],
and contains over 6.5 hours of data.

Sadly, existing audio-visual datasets have two problems. One
is that the recorded audio is in English, which may have problems
when extended to other languages. The other problem is that audio-
visual data or blendshape coefficients are unsuitable for driving
MetaHuman models.

3 METHOD
3.1 Overview

The architecture of our proposed model is illustrated in Fig. 2. The
primary objective is to create an emotional, audio-driven talking
head, while also enabling users to control the emotion and other
details of the output facial animation. The model takes as input an
audio clip and desired emotion, and yields the controller values re-
quired to drive the MetaHuman model to render the facial animation.
It is composed of three parts, audio encoder, emotion encoder and
Audio2Rig module.

3.1.1

Our audio encoder is constructed based on the self-supervised pre-
trained speech model, wav2vec2.0 [3]. The multi-layer convolu-

Audio Encoder

tional feature extractor takes raw audio as input and output latent
speech representations with a frequency of 50. That is, the length
of extracted features for 1s of audio would be 50. The encoder con-
sists of several blocks containing temporal convolutional networks
(TCN) [4] followed by layer normalization and a GELU activation
function. Then the output of the feature encoder is fed to a con-
text network which follows the Transformer architecture to build
representations from the entire sequence.

We initialize our audio encoder with a pre-trained wav2vec2.0
BASE model, which has been trained on a dataset of 960 hours
of LibriSpeech data [23] sampled at a 16 kHz frequency. In this
paper, we use wav2vec2.0 to extract the general features of the
audio, and freeze the weights of the feature extractor throughout
the training process. But the hidden states after feature extraction
have a frame rate of 50, which is incompatible with our dataset
recorded in frame rate of 60. To solve this, we implement a simple
linear interpolation after this to ensure frequency alignment. And
according to huggingface, attention mask should not be passed to
wav2vec2-base structure to avoid degraded performance.

3.1.2 Emotion Encoder

In a corresponding manner, the emotion encoder accepts the emotion
category from O to 6 as input and transforms it into a vector with
identical dimensions to the content encoding. The emotion encoder
is composed of an embedding layer and two fully connected layers.
The embedding layer generates codes for different emotions, while
the two fully connected layers further process these emotion-specific
codes to produce encoded content with the same dimension.

As for the choice of input emotion, the model does not directly
extract emotions from the audio, primarily because audio contains
only a limited portion of emotion-related features. The emotion
contained in facial expressions and the speech text is ignored, which
is likely to cause inaccurate facial expressions. The audio-based
extraction of emotions can be challenging. EVP [19] uses the MFCC
of input audio clips to predict the emotion of input audio, but can
only achieve an accuracy of 60%. Meanwhile, EmoTalk [24] applies
a model based on XLSR-Wav2Vec2 [10] for prediction. After fine-
tuning on our dataset, it can achieve an accuracy of about 90%.
In addition, by inputting emotion label, users gain control over
the emotional category for each frame, thus accurately obtain the
required facial animation.

3.1.3 Audio2Rig

After collecting audio features and emotion encoding, they needs
to be combined to form the input of Audio2Rig module. The au-
dio features are first processed to produce content encoding. This
content encoder comprises a fully connected layer and a positional
encoding layer. The positional encoding layer serves to incorporate
information regarding the relative position of tokens within the se-
quence window. The positional encoding has the same dimension
as the model, and will be added to the input vector. In this regard,
we use the original positional encoding in the transformer encoder,
which has the form of sine and cosine functions of Equation 1 and
Equation 2. The pos is the position in the input vector, i is the dimen-
sion, d,,,q.1 18 the feature dimension of the model, which is set to
512 in our model. By implementing sinusoidal version of positional
encoding, model is able to extrapolate to sequence lengths longer
than the ones encountered during training.

. pos
PE(p()s,Zi) = Sll’l( 2 )]
10000 @modet
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By combining the content encoding and emotion encoding, the re-
sult of 174-dimensional vector serves as input of Audio2Rig module.
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Figure 2: Structure of EmoFace

This module is composed of 10 transformer encoder layers and one
fully connected layer to match dimensions for the output controller
rigs. It is noteworthy that we depart from the approach employed
in other studies, such as [14], by deploying another Transformer
encoder for prediction. Our choice to utilize a transformer encoder
is mainly due to the following considerations:

* Transformer encoder significantly outperforms Transformer
decoder in terms of inference speed. We conducted inference
time tests on short audio clips using both CPU and GPU. When
on GPU, the average inference time is 21.57ms for Transformer
encoder and 432.29ms for Transformer decoder. On the CPU,
the times are 254.49ms for Transformer encoder and 811.48ms
for Transformer decoder. This clearly demonstrates that em-
ploying a transformer encoder is better suited to meet real-time
requirements.

* Transformer decoder traditionally incorporates all preceding
values when predicting a new frame. However, in practice, only
a few previous frames offer substantial insight for forecasting
the next frame. Additionally, the wav2vec2 feature extractor
already contains contextual information within the content
encoding. Therefore, discarding previous frames has little
impact on the result.

» To address potential jitter in the output sequence, we apply
a Savitzky-Golay (savgol) filter with a window length of 15
frames and a polynomial order of 3. This filtering process
ensures a smooth and visually pleasing facial animation.

3.2 Blink

While the above audio-driven model allows the generation of emo-
tional talking heads with vivid expressions, a crucial issue remains:
it lacks the action of blinks, which can significantly impact the user’s
perception of the generated animation.

Several factors contribute to the absence of blinks in the generated
animations. Firstly, the dataset recordings are mainly short sentences
less than 5 seconds in duration. Consequently, blink actions are
rarely captured. Secondly, blinks do not exhibit a straightforward
association with audio content. Other factors, such as head motions
and intonation, can also influence blink frequency. As a result, it
becomes challenging for the model to learn the underlying patterns
related to blinks.

Previous study on blink rate [5] highlights that blink rate is some-
what dependent on cognitive states, with tasks involving speaking or

Figure 3: Positions of 6 landmarks for eye

memory increasing blink rate and stable visual targets decreasing
blink rate. Their results indicates that in the speaking state, the blink
frequency, that is, the number of blinks in one minute, roughly con-
forms to the logarithmic normal distribution, with an average value
of 26. Gender and age have no significant effect on blink frequency
in this state. The research of Le et al. [20] indicates that blinking
movements are mainly divided into involuntary blinking and vol-
untary eyelid movement. The former is usually completely closed,
while the latter is usually related to head posture and emotional
information. Their research also pointed out that the frequency of
involuntary blinking basically conforms to the log-normal distribu-
tion law, in which the mean value of the frequency in the speaking
mode is 21.1, and the standard deviation is 3.6.

As for blink detection, we refer to the research of Cech [6]. Ex-
isting research on predicting face landmarks [2,41] typically utilize
a single frame of static images as input and predict face landmarks
using a set of 68 distinct points. Specifically, the left and right
eyes are represented by 6 landmark points each, as illustrated in
Fig. 3. Once these landmarks have been acquired, the eye aspect
ratio (EAR) can be computed according to Equation 3. When the
eyes are closed, the EAR value is approximately zero. The features
of EAR includes qualities such as insensitivity to head pose, mini-
mal variation between individuals, and resilience to uniform image
scaling and rotation.

2 — Ppell +11p3 — Ps
P2 — pel| +11p3 — psl| 3)
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A traditional approach for detecting eye blinks involves setting
a threshold and considering a number of consecutive frames that
fall below this threshold as a blink event. While this method is
straightforward to implement, it carries the risk of misjudgment.
Specifically, a low EAR value does not necessarily mean a blink
event, as emotional expressions or certain facial movements can

EAR =

390
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also cause a reduction in the EAR value, potentially leading to the
error judge of blinking events. To address this issue, we explored
the training of a support vector machine (SVM) classifier for blink
detection using EAR values within a temporal sliding window. Given
that the duration of blinking typically falls within the range of 0.1 to
0.4 seconds, and considering a video with a frame rate of 30 fps, we
employ a sliding window of seven frames. This window includes the
current frame, as well as three frames before and after. We create
the training dataset by frame-by-frame labeling of videos.

The method of using the EAR threshold to identify blinking is
highly reliant on the precise selection of the threshold value. If
the chosen value is too small, it may fail to recognize some blinks.
Conversely, if set too high, actions induced by emotional expres-
sions, such as squinting, may be classified as blinks, resulting in
false recognition outcomes. Fig. 4 presents a comparison between
the results of the SVM predictor and the threshold-based predictor.
Although there is one false-predicted frame by SVM predictor, as
only consecutive frames will be considered as blink, the SVM pre-
diction identifies one blink, whereas the threshold-based prediction
identifies two. By employing the SVM model, which does not de-
pend on exquisitely set EAR threshold, the occurrence of false blink
recognition is effectively avoided, making the frequency statistics
more reliable.
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Figure 4: Comparison between SVM and threshold predictor

Using the trained SVM model, we can collect the frequency of
blinking from the dataset. Given that the videos are relatively short,
we initially collect the time differences between two consecutive
blinks and subsequently convert them into the number of blinks per
minute for fitting purposes. Fig. 5 shows the collected frequency, and
its fitting result of the log-norm distribution curve. Values exceeding
100 are excluded from the analysis. It can be seen from the results

that the blink frequency basically satisfies the log-norm distribution.

The mean and standard deviation of the natural logarithm of this
distribution are calculated as 3.518 and 0.532, respectively.

With the log-normal curve successfully fitted, the time intervals
between blinks can be sampled from this distribution. When it is
time for a blink, the blinking action is regulated by multiplying the
blinking control parameters generated by the original eye values
within a window of 13 frames, considering that the target frame rate
is 60 frames per second. The incorporation of an independent blink
controller effectively governs the blinking action, ensuring that the
avatar blinks at a plausible and randomized frequency. Our approach
also provides users with the flexibility to freely adjust the blink rate
by manipulating the distribution parameters.
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Figure 5: Collected blinks in a minute and its log-norm fitting curve

3.3 Gaze

An additional issue related to upper face generation is the fixed eye
gaze, which imparts a static and unnatural appearance to the talking
head. This issue stems from the fact that the recording equipment is
placed directly in front of the face. Consequently, during recording,
the actor tends to maintain a straight-ahead gaze, leading to an
absence of eye movement data in the dataset.

To tackle this issue, our initial approach involved extracting eye
dynamics to train a model for audio-driven gaze prediction. We em-
ployed OpenFace [1] to capture the eye gaze angles from the MEAD
dataset, forming a corresponding audio-gaze dataset. Subsequently,
we deployed a model that combines wav2vec2.0 and a DNN to learn
the mapping between audio and gaze. However, the result of this
training reveals that the gaze actions generated by the model tends
to remain static, with little variation in gaze angles. This can be due
to the concentration of gaze angle data within a limited range, which
causes the model’s output towards the mean value of the training
data. Then we doubled the gaze angles in the training dataset, which
led to the emergence of eye darts. Nevertheless, a notable problem is
that these eye darts demonstrate a high degree of consistency among
different audio inputs and tend to favor a straight-ahead gaze over
other directions.

Previous study has highlighted that eye movement is influenced
by a multitude of factors, such as the accent of the spoken text and
head posture [20]. Therefore, it is difficult in principle to learn the ir-
regular mapping relationship between audio and gaze. Consequently,
we turned our attention to Nvidia’s Omniverse Audio2Face and ob-
served its generated animations. While Audio2Face is capable of
producing more natural blinks and eye movements, we observed a
uniformity in facial movements across different audio inputs, similar
to what we encountered with model-driven gaze generation. This
uniformity, when applied to multiple audio inputs simultaneously,
could result in a monotonous outcome.

Therefore, we considered a random yet efficient way. Parame-
ters in the random generator include the range for sampling frame
intervals, gaze radius and gaze angle, as shown in Fig. 6. In each
cycle, the generator randomly samples the number of interval frames,
radius and angle in the set range. And smoothly moves the eyeball
to the angular position on the corresponding amplitude. To avoid
constant movement, it has a 40% chance of returning to the center
of eye. This value is set by comparing between results of different
possibilities. If lower, the frequency of eye rolls can be too high.
If higher, there are cases of staring for a long time. By fine-tuning
the range settings for the random sampler, we can achieve a more
natural result and ensure compatibility with audio inputs of varying
lengths. In this model, we have set the interval frame range to be

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.



radius

random interval frames

Figure 6: Gaze sampling procedure

Table 1: Data distribution of different emotions
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Train 806 141 143 143 142 95 95 47
Validation 41 7 7 7 7 5 5 3
Total 847 148 150 150 149 100 100 50

between 15 and 45 frames (equivalent to 0.25-0.75 seconds), with
a radius range of 0.1-0.2. The transitions between different states
follow a linear interpolation approach.

4 EXPERIMENT
4.1 Dataset

Considering the absence of a suitable publicly available dataset, we
undertook the task of recording and processing data to create our own
audio-rig dataset. The data collection process involved gathering
audio-visual data from a carefully chosen actor, who performed in
seven different emotions. To ensure the accuracy and naturalness
of the performances, we planned and executed the data collection
process, including the choice of audio content, the method employed
for data collection, and the post-processing of videos. Moreover, to
guarantee the audio’s quality, we thoughtfully selected emotionally
consistent text covering possible phonemes. As different people
have different ways to show emotions, the data collected from only
one actor may limit the creativity of the model. We will expand the
dataset by collecting data from different actors in the future.

For the design of the audio content, our aim was to maximize the
phonemes within the speech material. The data for each emotion was
divided into two segments: common and special. The common texts
were devoid of explicit emotional cues and could be used across
different emotions. In contrast, the special texts were tailored to con-
vey specific emotional information and were exclusively employed
in the dataset for that particular emotion. While for the emotion
category, we defined seven different emotions including happy, sad,
angry, surprised, fear, disgusted and neutral emotion states.

Upon recording the audio and videos, we proceeded to process
this data to obtain the face controller values that serve as inputs for
driving the MetaHuman model. A team of artists are responsible
for converting video to rig sequence. They manually adjusted the
controller values of the MetaHuman model to match the recorded
video. By creating keyframes in this way, ground truth controller
values can be obtained. The dataset consists of a total of 174 pa-
rameters. For each emotion, a distinct subset of these parameters
is used, with any unused parameters set to 0. The 174 parameters
separately control different parts of the face, mainly eye, jaw, mouth,
teeth, tongue, brow, ear, nose and neck. Furthermore, the dataset
was divided into a training set and a validation set, and the precise
distribution is illustrated in Table 1.
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Figure 8: Correlation heat map of left and right face controller rigs

We used phoneme toolkit (phkit) perform to phoneme decomposi-
tion of the text, enabling the analysis of speech text content. Chinese
phonemes differ from those in English as they include initials, finals,
and tones. Our focus remained on the initials and finals, which
comprise 27 types of initials and 41 types of finals. We tracked
the number of occurrences of different phonemes, and phkit can
decompose it into a total of 65 distinct phonemes. An example of
phoneme distribution of happy emotion is shown in Fig. 7. It is
worth noting that the corpus we devised comprehensively covers
nearly all phonemes, ensuring that the training set incorporates a
wide range of mouth animations.

Then, we conducted an analysis of the symmetry between the
left and right part of the face. This involved the derivation of a
correlation coefficient heat map that illustrates the relationships
between parameters for the left and right sides of the face, as shown
in Fig. 8. As we can see, there are three diagonal lines in this
heat map, which indicates that although the symmetric controller
values are not strictly consistent, they do exhibit a high degree of
correlation.

4.2 Model Details

In terms of the parameter settings, we employed the Adam optimizer.
As for the learning rate strategy, training was conducted using a
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StepLR scheduler with a step size of 100 and a decay rate of 0.995.
This means that every 100 rounds of training, the learning rate was
reduced to 0.995 times its current value. In the selection of the loss
function, we utilized the mean square error (MSE) to quantify the
difference between the predicted 174 parameters for each frame and
the ground truth. The training lasted a total of 3000 rounds.

Our model does not require audio pre-processing, the audio just
needs to be loaded at a frequency of 16KHz. In the pre-training
stage, we utilized the wav2vec2.0 BASE structure. Specifically, we
employed the wav2vec2-base-960h pre-trained model. The weight of
feature extractor in this pre-training model is frozen during training.
The hidden states output by the pre-trained model is first mapped
through a fully connected layer, and then the 512-dimensional vector
is generated through the positional encoding layer. In the case of
the emotion encoder, it comprises an embedding layer and two fully
connected layers. We applied Leaky ReLLU with a slope of 0.2 as the
activation function between the fully connected layers. The emotion
encoder also outputs a 512-dimensional encoding. The Audio2Rig
module is structured as 10 transformer encoder layers and a fully
connected layer. This component is responsible for mapping the
512-dimensional hidden states into a 174-dimensional controller rig
sequence.

5 [EVALUATION
5.1 Comparison to state-of-the-art

We conducted a comparative analysis between the results produced
by EmoFace, FaceFormer [14] and EmoTalk [24]. But the other
two methods are designed for other datasets. FaceFormer uses VO-
CASET, an audio-mesh dataset. And EmoTalk proposed 3D-ETF
based on RAVDESS [21] and HDTF [42], which is audio-blend
shape correlated. To better compare them in our dataset, we mod-
ified FaceFormer and EmoTalk to fit the emotion label and output
dimension of our dataset. We removed “template” in FaceFormer,
”level” and “’person” in EmoTalk. And the output dimensions for
both models are set to 174.

Table 2: Comparison of MAE with state-of-the-art

B
c £ <
E E 2
Model < = i)
EmoFace 0.04024  0.03697  0.05698
FaceFormer 0.04114 0.03919  0.05389
EmoTalk  0.04273  0.03963  0.05956

Quantitative analysis We use the mean absolute value (MAE)
of the prediction results and the ground truth to evaluate the mod-
els. The comparison is shown in Table 2. The table indicates that
EmoFace exhibits a smaller MAE, and its predictions are closer to
the ground truth. However, the difference between EmoFace and
FaceFormer is not significant. As EmoTalk requires paired audios
as inputs, special audios that contained only in certain emotions can-
not be used, which may have negative impact on the performance.
What’s more, EmoTalk does not directly use emotion label as input,
but disentangles emotion embedding from the audio, any wrong
prediction can seriously affect the predicted facial expression. To
gain further insights, we conducted a separate analysis of the param-
eters in mouth area and eye area respectively. The controller rigs of
the mouth region have a more significant impact on audio-lip syn-
chronization. Conversely, the controller rigs affecting the eye area
play a crucial role in conveying emotions. Our results demonstrate
that EmoFace outperforms FaceFormer and EmoTalk in terms of
mouth-related areas, although it slightly lags behind in other facial
regions.

Figure 9: Comparison of rendered animation with state-of-the-art

Qualitative analysis Considering the complex many-to-many
mapping between upper face movements and audios, the quantitative
evaluation metrics may not provide a completely accurate reflection
of the prediction results. To address this, we rendered the predicted
animations using a MetaHuman model, and the comparison is de-
picted in Fig. 9. In terms of conveying emotional expressions, Emo-
Face and FaceFormer excel at capturing emotional characteristics.
But as EmoTalk first predicts emotion from the audio clip, a wrong
prediction can cause severe error in facial expression. However,
when examining mouth dynamics, the lip movement of FaceFormer
is slightly insufficient, resulting in half-open mouth in many cases.
In contrast, the lip movements generated by EmoFace and EmoTalk
are able to maintain synchronization with the audio.

5.2 User Study

We designed a user study to compare with FaceFormer and EmoTalk
to evaluate our model.

5.2.1 Participant and Design

We recruited 15 participants from Shanghai Jiao Tong University for
the user study, the average age was 22, ranging from 18 to 25 years
old; 10 were men. They were naive to the purpose of the experiment.

We used the three trained models to render the two video clips for
each emotion in a MetaHuman model for three different methods,
as well as the extracted ground truth (GT).

The experiment involved 7 emotions (Angry, Disgust, Fear,
Happy, Neutral, Sad & Surprise), 4 methods (GT, EmoFace, Face-
Former & EmoTalk) and 2 sentences (Common sentences, Emotion-
related sentences) in a within-subject design regarding emotions,
and methods. The video clips were presented to the participants in
random order. Each participant took part in 56 trials to evaluate the
human expression, there were 840 trials in total.

5.2.2 Procedure

Each participant were asked to answer the following questions for
each rendered animation:

* Emotion Recognition: “Which emotion is expressed?” Partici-
pants were asked to select one emotion from: Angry, Disgust,
Fear, Happy, Neutral, Sad and Surprise.

* Naturalness: “How natural is the generated face?” Participants
rated naturalness from 1 to 7, where 1 represents not natural
at all”, and 7 represents “very realistic”.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.



» Lip Synchronization: “Is the lip motion in sync with audio?”
Participants rated on quality of lip synchronization from 1 to
7, where 1 represents not synchronized at all, and 7 represents
perfect synchronization.

The whole experiment took about 15 minutes. The participants

were paid 20 RMB amount. The experiment was approved by Shang-
hai Jiao Tong University Research Ethics Committee.

Table 3: Comparison of ratings with 95% confidence interval

g 2
= £ g
£ = >
S 35 2
S & =9
Model ~ Z S|
GT 0.833+£0.051 6.2284+0.098  6.076 £0.083
EmoFace 0.805+0.054 5.514+0.141  5.509 4+0.100
FaceFormer 0.776+£0.057 4.081+0.227 4.609+0.128
EmoTalk 0.671+0.064 4.601+0.212 5.295+0.102
5.2.3 Result

After gaining rating from participants, we conducted separate re-
peated measures Analysis of Variances (ANOVAs). We calculated
the average score for each method with an error bar of 95% con-
fidence interval, as shown in Table 3. We ran Mauchly’s test
for validating sphericity, and when it is significant, we will ap-
ply Greenhouse-Geisser correction and mark the corrected result
with “*”. Post-hoc tests were conducted using the Tukey test for the
comparison of means.

Emotion Recognition For the recognition of emotions, the
choices of users are converted to O (incorrect) or 1 (correct). It can
be seen that all three methods can well express emotion features.
In contrast, our method achieves the best emotion recognition with
average score of 0.809. FaceFormer also achieve 0.782, which is
almost as good. However, the correctness for EmoTalk is signifi-
cantly lower with 0.681. We used ANOVA to compare Faceformer
and Emotalk respectively with our model. Results revealed the
main effect of different models are significant with p = 0.004*. The
post-hoc result shows that our model is significantly better than
EmoTalk with p = 0.0059, but shows no significance to FaceFormer
with p = 0.8959. The result of emotion recognition shows that our
method can precisely express emotion in the output facial animation.

Naturalness The score for naturalness reflects the overall result
of the generated facial animation. It can seen that our model with
added blink and gaze achieves a rating of 5.559, which significantly
surpasses the other two. While FaceFormer achieves 4.127 and
EmoTalk achieves 4.569. Our method can achieve a score close to
GT of 6.235. As for significance, our model is significantly better
than FaceFormer and EmoTalk, with p < 0.001*. The post-hoc
result shows that our model is significantly better than EmoTalk
and EmoFace with p < 0.001 for both of them. It shows that our
method can produce more natural facial expressions than the other
two models.

Lip Synchronization The rating for lip synchronization mainly
reflects the accuracy of the lower half of the face. With pretrained
wav2vec2 audio feature extractor, all three models can generate
good lip synchronization with the audio. EmoFace (5.509) and
EmoTalk (5.274) gain similar ratings, while FaceFormer (4.617)
slightly lags behind. The main effect of the generation method is
also significant, with p < 0.001*. The result of post-hoc shows
that our model is significantly better than EmoTalk and FaceFormer
with p < 0.001. It demonstrates that our model could produce more
precise lip movements.

5.3 Ablation study

We conducted modifications to the EmoFace model to investigate the
influence of different components on the prediction results. These
modifications were divided into three categories: with and without
weight initialization of the audio encoder, removing positional encod-
ing, and the use of alternative structures to replace the transformer
encoder in the Audio2Rig module. Each of the modified models was
trained independently, and we subsequently performed quantitative
analyses on the prediction results. We also apply MAE to evalu-
ate these models. The outcomes of these analyses are presented in
Table 4.

Table 4: Comparison between modified models

B
3 < 3
. R
= 3 o
Model = = 3
EmoFace 0.04024 0.03697  0.05698
wo weight initialize  0.04706  0.04641  0.05826
fc decoder 0.04166  0.03897  0.05703
Istm decoder  0.04128  0.03862  0.05631
wo positional encoding  0.04043  0.03743  0.05648

Wav2vec2.0 initialization We conducted a comparison be-
tween the predicted animations with and without weight initializa-
tion. The results shows a clear deterioration in the quality of facial
motion when weight initialization is not employed. Furthermore,
the MAE value of the predictions increases significantly. Relatively
speaking, the decline in the model’s performance without the use of
initialized weights, is mainly attributed to increased errors in mouth
shape predictions. This observation highlights the importance of
initializing with wav2vec2.0 pre-trained model. The prediction an-
imations also exhibit issues such as unsynchronized audio and lip
movements, as depicted in Fig. 11.

Decoder In the EmoFace model, we employed a 10-layer trans-
former encoder as the foundation for constructing the decoder. For
comparison, we conducted additional training and testing with two
distinct decoder architectures, one utilizing fully connected layers
and the other implementing LSTM layers. In terms of quantita-
tive analysis, when compared to the original model, the MAE of
the fully connected decoder and the LSTM decoder exhibited rel-
atively similar values for both the mouth shape and other parts of
the face. However, the predicted animations reveal that when the
audio reaches sections with lower volume, both decoders struggle to
accurately represent the mouth movements, as illustrated in Fig. 12.
In comparison, the LSTM decoder, which can capture time-series
information, yields slightly better performance, whereas the fully
connected decoder tends to output mouth shapes resembling silence.

Positional Encoding The position encoding strategy we em-
ploy involves adding a temporal bias to the hidden feature and
incorporating positional information into the hidden states. As a
comparison, we attempted to remove the positional encoding com-
ponent from the model to assess its impact on the model’s output
results. Upon the removal of positional encoding, the MAE of the
predictions did not show significant changes. Judging from the gen-
erated animation, it became evident that the removal of positional
encoding had little overall impact. This is likely because contextual
information is already embedded in the features extracted by the
content encoder. However, the absence of relative position infor-
mation from positional encoding can lead to some inaccuracies in
predictions, especially when rapid changes occur in the mouth shape,
as illustrated in Fig. 13.
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Figure 10: Results of User Study

Figure 11: Comparison to EmoFace without initialization

Figure 12: Comparison between different decoders

6 DiscussioN

While our method can already generate realistic emotional facial
animations, there are some limitations that need to be addressed.
First, our method does not entirely resolve the challenge of mul-
tiple mappings between audio and facial expressions, potentially
resulting in a lack of fine-grained detail in other facial areas. This
issue is currently managed by introducing separate controllers for
specific parts of the face, but it may become more obvious when
working with larger datasets. Second, our model is built upon a
large pre-trained language model, which leads to longer inference
times and may not be suitable for real-time applications. Third, our
dataset consists of data from a single actor in Chinese, which has
relative small scale. Not only does it limit the diversity of generated
expressions, but the subjectivity ability of the actor directly affects
the performance of the model. Fourth, the generated expressions
still suffer from the problem of lacking emotional intensity and lack
of facial details comparing with motion captured ones, making it
unable to meet the needs of cutscene-level applications. Our future
work can be divided into two parts, expanding our dataset with data
of different characters, emotion intensities and even languages, and
exploring better face generation model using latest architectures
such as diffusion models.

Our proposed method has a wide range of applications. It can be
used in various fields, including game and movie production, where
we can efficiently generate target animations from audio clips. In
traditional production processes, creating facial expression videos
for expression transfer or manually adjusting model parameters for
each animation frame can be time-consuming. In comparison, audio-

Figure 13: Comparison to EmoFace without positional encoding

driven generation methods offer significant advantages in terms of
speed and efficiency.

Moreover, in avatar-mediated communication, audio-driven face
animation can play a pivotal role by synchronizing the avatar’s facial
dynamics with the spoken words of its user. This method effectively
tackles the challenge of missing facial expressions when wearing
a VR headset. It capitalizes on voice recognition to detect subtle
speech nuances, such as pitch, tone, and rhythm, and translates them
into dynamic real-time facial animations. This innovation not only
enhances the expressiveness and engagement in communication but
also forges deeper emotional connections in virtual interactions,
bridging the gap between the digital and physical worlds. As we
continue to explore this remarkable technology, it holds the potential
to elevate avatar-mediated communication into a transformative and
indispensable tool within our ever-increasingly digitalized society.

7 CONCLUSION

In this work, we introduce a novel approach to generate multi-
emotional 3D facial animations driven by audio input. Our model,
EmoFace, employs a pre-trained audio encoder to extract essential
audio features, which are then combined with emotion encoding
to produce facial controller values through the Audio2Rig module.
Additionally, we incorporate supplementary blink and eye gaze con-
trollers into the system to ensure more lifelike results. To train this
model, we propose an emotional audio-visual dataset and derive
the controller rigs for each frame. In essence, EmoFace excels at
the task of animating the MetaHuman model with emotional audio
inputs, producing outcomes with superior lip synchronization and
emotionally expressive facial expressions.
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