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Performing a grasp is a pivotal capability for a robotic gripper. We propose a new eval-
uation approach of the quality of grasping stability via constructing a model of grasping
stiffness based on the theory of contact mechanics. First, the mathematical models are
built to explore “soft contact” and the general grasp stiffness between a finger and an ob-
ject. Next, the grasping stiffness matrix is constructed to reflect the normal, tangential and
torsion stiffness coefficients. Finally, we design two grasping cases to verify the proposed
measurement criterion of the quality of grasping stability by comparing different grasp-
ing configurations. Specifically, a standard grasping index is used and compared with the
minimum eigenvalue index of the constructed grasping stiffness we built. The compari-
son result reveals a similar tendency between them for measuring the quality of grasping

Robotic modeling stability and thus, validates the proposed approach.
© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The robots can be applied to practical life by visual-driven perceptions and manipulations [1,2]. The grasp is a crucial
capability for a robotic gripper [3]. The quality analysis of grasping stability is one of the foundational problems for robotic
grasp [4]. The formulation and characteristics of the stability quality thus play a key role in grasping tasks such as planning
and executing a grasp, designing robotic hand [5-7] (see Fig. 1). It is common for soft-finger contact in grasping applica-
tions since soft-finger contact reflects a practical situation where a robotic finger contacts an object, as shown in Fig. 2.
Regardless of whatever grasping types, the condition of a stable grasp is that the grasped object can keep a stable state of
quasi-static equilibrium under a certain external disturbance [8]. Our aim that provides this model is to evaluate how good
the grasping configuration for grasping stability is (the quality of grasping stability [4]), after realizing a basic force static
equilibrium. That is, the precondition of the use of the proposed model is that the grasping system has arrived at a static
equilibrium. Under such condition, we use the eigenvalues extracted from the grasping stiffness matrix to reflect how stable
the corresponding grasp is.

Two main versatile approaches to measuring the grasping stability are as follows. The first is that the potential energy
is applied to evaluating the grasping stability. The elastic system is used in optimizing the grasping quasi-static equilibrium
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Fig. 1. Robotic gripper grasping a spherical object by three fingers.

Finger 1

Fig. 2. Force equilibrium of contact model. {0; — xyz}, {S; — xyz}, {C; —xyz} and {0 — xyz} denote the sensor frame, the fingertip frame, the contact frame
and the object frame, respectively; f. and m. are the contact force and moment, respectively; f, and f; represent the normal and tangential forces in
{G; — xyz}. c is the position vector between {0; — xyz} and {C; — xyz}.

models for analyzing the grasping stability [9]. The contact geometry that generates the important effect on grasping stabil-
ity was investigated in [10,11] based on the stiffness matrix. By building a generalized contact stiffness matrix, the authors
explored the contact characteristics with line springs as the equivalence of the soft-finger contact, which reveals the rota-
tional effects on the contact stiffness based on the screw theory for evaluating grasping stability [12,13]. The other is that
the form and force closures are applied to exploring a grasp stability [14,15]. The following references are far from complete
but somewhat representative for evaluating a grasp stability. As for evaluating a grasping stability, the authors constructed a
mobility theory to present the effect of curvatures of contact surface and object from grasping form closure insight [16,17].
The polyhedral bounds including contact forces, normals, curvatures at contact surfaces were used for evaluating grasping
stability based on the grasp force closure [18]. There are few works exploring the quality of grasping stability. The grasp
planning and stability problems were formulated as optimization problems with respect to three grasp quality functions by
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calculating the enclosed area [4]. By investigating the structure of the affine-scaling vector fields associated with the opti-
mization problem, they give a detailed convergence analysis of these algorithms to measure the quality of grasping stability
[19]. The authors presented a unique grasp analysis system that, when given a 3D object, hand, and the pose for the hand,
can accurately determine the types of contacts to compute two measures of quality for the grasp [20]. For evaluating the
quality of grasping stability, they investigated whatever the desired grasp is, such as when the desired grasp is a force clo-
sure and equilibrium grasps [21]. Tsuji et al. considered approximating the friction cone by using a few ellipsoids to test
force closure for evaluating the grasping quality [22].

To the best of our knowledge, few available published works take into consideration about the effects of contact mechan-
ics on the quality of grasp stability. As the main contribution of this work, we propose a new generalized and quantitative
analysis of the quality of grasp stability through providing an outline of measuring the quality of grasp stability by means
of the constructed grasp stiffness matrix. Here for each grasp contact, patch contact model instead of point contact model is
adopted, thus normal force, tangential force and torsional moment are considered. First, we introduce an equivalent model
of grasp contact and a general procedure of constructing grasping stiffness matrix, including extracting contact location and
orientation information from six-dimensional force/torque sensor; constructing global grasping stiffness using contact stiff-
ness coefficients and adjoint transformation matrix. Then, we explore the deduction of contact stiffness coefficients following
contact mechanics modelling principals. Contact stiffness coefficients include normal stiffness coefficient, tangential stiffness
coefficient and torsional stiffness coefficient, and they are modelled as functions of local contact curvature, contact material
properties as well as related force/torque magnitudes. Next, we construct the grasp stiffness matrix based on the models
built above, and evaluate grasp stability quality using the minimum eigenvalue of constructed stiffness matrix. Finally, we
design two grasp cases to verify the proposed quality criterion of grasping stability by comparing different grasping con-
figurations. Specifically, a standard grasping index [4] is used and compared with the eigenvalue index of the constructed
grasping stiffness we built. The comparison result reveals a similar tendency between them and thus validate the proposed
approach. Here we provide the differences and advantages of the proposed model with respect to the previous methods as
follows.

« We show how the quality of grasping stability can be assessed based on the data that contains grasping information such
as approach vector, and online proprioceptive sensory from fingertips during execution. The proposed method is capa-
ble of performing quality evaluation of grasp stability from sensory streams. We directly model the inherently complex
relationship between grasp stability and the available sensory.

To resist a small external wrench, a force-closure grasp [14] may have to apply large contact forces to the object, which
obviously is not ideal for practical use. However, the proposed method can compute optimal grasping forces rather than
just provide large contact forces.

Different from most of previous works, we focus more on the prior grasping configuration than the grasping process.
We want to estimate the likely success or failure of a grasp using the proposed model so that we can use more robust
grasps and avoid grasps that are likely to fail in practice.

The method presented by Liu et al. [4] needs the size of grasped object to calculate the grasping area. Different from
Liu et al. [4], the proposed model of evaluating the quality of grasping stability does not require the size of the grasped
object. That is, as for unknown objects, our algorithm can calculate the value to measure the grasping stability quality
by sensors.

Depending on the proposed model, we can configure fingertips of a gripper for realizing a more stable grasp.

While the quality evaluation of grasping stability still often leads to tedious and numerically costly computation algo-
rithms [19], our method does not numerical procedure iteratively. It means that the use of the proposed methods is easy
to implement for online computation. therefore, it is much more efficient than [20]. It is also more accurate than the
previous methods [20-22], as it neither searches in finite wrench directions nor uses linear or ellipsoidal approximation
of friction cones.

The rest of contents consist of five sections. Section 2 constructs an equivalent grasp model and general model of grasp-
ing stiffness. The construction of the contact stiffness and determination of the normal, tangential and torsion stiffness
coefficients are illustrated in Section 3. The effects of factors on stiffness coefficients are discussed in detail in Section 4.
Section 5 describes the quality evaluations of grasp stability based on the constructed grasp stiffness, followed by conclu-
sions and future work in Section 6.

2. Grasp stiffness construction
2.1. Problem formulation

As stated above, the soft finger contact always occurs in life. That is, this soft contact is the most general case in practical
grasps. For instance, humans grasp objects using this type frequently. A soft finger contact between two real (nonrigid)
objects results in mutually transmitting a distribution of contact tractions that are compressive over a finite area of contact.

The instinct sensing is implemented to reflect the contact situations when a soft finger contact occurs. Specifically, a sur-
face of the end of robotic finger, which we name it a fingertip, is attached by a six-dimension force/torque sensor. Referred
to the reference frame O;, the force/torque sensor can obtain all three components of both the resultant force f and the
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resultant moment m (see Fig. 2). Note that the choice of the reference frame O; is arbitrary, as we can easily express f and
m in terms of any other coordinate frame fixed to O;.
The original force sensor data (the wrench) from a fingertip is described as

w=[fm]". (1
The fingertip surface can be described by the implicit relation
S(e)=0 (2)

where e is a point in space defined with respect to O;. The surface S should have continuous first derivatives, so that a
normal unit vectorn can be defined at every point on S as
_VS(e)
T VS(e)

3)

from which V indicates the gradient operator. Let C be the contact centroid. f; and m, represent the force and moment
applied at C respectively, which are equivalent to a “soft finger” contact. The measurable quantities f and m are related to
the unknowns ¢, f; and m,, by force and moment balance equations with respect to the coordinate frame of force-torque
Sensor,

{ f:fc; (4)

m=me+cx f.

When soft finger contacts exist in grasping, the torque m. and the unit vector n are parallel being normal to the surface
that haws the contact centroid C; thus

nome= gVS(c) (5)

for some constant K.
From which we are able to obtain the normal direction n of contact area, as well as the location C in the sensor coordi-
nate frame {O; — xyz}. According to the vector projection, the normal force and tangent force can be developed as

fo= oL n(e)

n(©)'n(c)
ft = f - fn

To simplify derivations based on a closed-form algorithm, a specific class of surfaces-namely is applied to restricting the
fingertip surfaces and thus, quadratic forms of the type

S(e) =e'ATAe —R> =0 (7)

(6)

where A is a constant coefficient matrix, and R is a scale factor used for convenience. Because the reference frame O; can be
moved arbitrarily, we can assume without loss of generality that A can be written in diagonal form

5 0 0
A=[0 & 0O (8)
0 0 1

with 0 < % <1,0< % <1land0 < % < 1. In this case, the principle axes of the ellipsoid form by the surface are given by
2R6, 2RY. and 2RT, respectively.

Indeed, many researchers can use the intrinsic contact sensing to explore more complex contact surfaces rather than
one with the simple geometry introduced above. However, the described model of sensing force/torque information at the
surface contacts is suitable for compound convex surfaces consisting of simpler surfaces that share the same normal at the
corresponding boundaries.

2.2. Building adjoint transformation

Since a screw can be represented in the form of a six-dimensional vector, it follows certain rules of coordinate transfor-
mation when its based coordinate frame changes. Two Cartesian coordinate frames {A — Xqyqzq,} and {B — xpypz,} are used
to demonstrate the coordinate transformation of a screw, as shown in Fig. 3. Assume the symbol of a screw is S; in the
coordinate frame {A — xqYqz,}. Similarly, assume S, is the symbol of S in the coordinate frame {B — x;y;z,} and it can be
written as where both S; and S, are written using Plucker ray coordinates [23]. We can obtain the relationship between S,
and S, as

Sa = Adabsb (9)
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Fig. 3. Coordinate transformation based on screw theory.

where Ad,, is the adjoint transformation matrix and it has the form

_ Ry O
Adab - |:PabRab Rab:| (10)

where Ry, is the 3 x 3 rotation matrix from {A —Xqyaza} to {B —x,Yp2p}, Py is the anti-symmetric matrix of translation
vector pg,, it can be written as the following,

0 —-p; py
Pph=|p: 0 —Dpx]|. (11)
-py px O

from which pg, = [px py pz]". As a result, the equations above give us the general form of screw coordinate transformation
using the adjoint matrix Adg,. Thus, if we define the global coordinate frame {O — xyz} (generally located at the centre of
grasped object or somewhere else), then based on the screw theory, from the global coordinate frame {O — xyz} to the sens-
ing coordinate frame {O; — xyz} and from the sensing coordinate frame {O; — xyz} to the contact coordinate frame {C — xyz},
we can get the adjoint transformation matrices respectively, as follows,

R 0
Adgo, = | % :
oo I:Poo1 Rom Rooli|

R 0
Ad — 01C ,
or¢ |:PolcRolc Rolc]

where R, and Ry, are the 3 by 3 rotation matrixes representing coordinate frame {O; —xyz} and {C —xyz} with respect
to {0 — xyz} and {0y — xyz}, respectively. Py, and Py, are the anti-symmetric matrixes representing the cross products of po-
sition vectors poo,and po,c, respectively. Now the problem turns out to be finding the adjoint matrix Ad,,c between contact
coordinate frame {C — xyz} and {O; — xyz}. For the position vector po,c, we have po,c = c. Here we select Z-Y-Z Euler angle
representation to derive Ro,¢, which can be established as

cos(¥) —sin(@) 07[ cos(¥y) O sin(y)T|[cos(y) —sin(y) O
Roc = R:(D)Ry (Y )R () = |:sin(®) cos(¥) 0:| |: 0 1 0 i| |:sin(y) cos(y) O:| (13)
0 0 1] -sin(y¥y) 0 cos(¥) 0 0 1

where the coordinate frame {C — xyz} is defined such that the x-axis coincides with f;, and z-axis coincides with f,;. Thus in
{C — xyz}, the wrench w, is represented as

(12)

we=[fe m]J"=[fi 0 fr 0 0 m (14)

where f. and m, represent the loading force and moment in the contact area, respectively. And the force parts of f. and fhas
the relationship

f=R01cfc- (15)

The first two rotation angles ¢ and ¥ can be obtained according to n (which is already normalized) as

0 TNy
Rz(@)Ry(w)[o} =n= [ny]. (16)
1 n,
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Fig. 4. The stiffness of the fingertip represented by a set of passive compression line springs.

n is the normal vector described in {O; — xyz} representing the z-axis direction of {C — xyz}, so we have

0 0
n=Ro.c [(1)] = R:(M)Ry(Y)R:(v) [(1)] (17)

and the third rotation angle can be obtained from the third equation, their analytical forms are as follows,

¥ =cos!(ny), 0 =tan"' (),

_ f (18)
y = cos 1<_<”£”>(z)«/117”§>.

Thus, we are able to get the adjoint matrix Ado,¢ as well.
2.3. Construction of stiffness matrix

We make an assumption that the contact normals point inward and consider the stiffness of the robotic fingertip as the
equivalence of passive compression line springs, as shown in Fig. 4. Referring to [24,25], we develop the contact stiffness
matrix K; in the coordinate frame {C — xyz}, then integrate it into the global coordinate frame {O — xyz} according to the
equilibrium

n
K= Z (AdooiAdo,vs,v)Kci (Adoo,-Adoisi)T (19)
i=1

Since normal force, tangent force and normal torque is considered in this stiffness matrix (bending in x-axis and y-axis
are ignored in coordinate frame {C — xyz}), the stiffness matrix K, should has the form

Kei =J diag([kn, ke, ke ])J" (20)
where
00100 0]
J=(1 0 0 0 0 Of .
0 00 0O 1
We need to determine the stiffness coefficients ky, k; and k.. There are several approaches to finding the possible solu-
tions, including analytical models, FEA simulations and Experiment tests. The appendix introduces the detail derivations.
3. Contact stiffness modelling

3.1. Constructing model of elastic half space

The normal and tangential forces are applied to generating the stresses and deformations in a closed area S of the surface
in the neighbourhood of the origin for an elastic half-space bounded by the plane surface z = 0, as shown in Fig. 5.
We denote by C(&, n) a surface point in S, whilst A(x, y, z) represents a point within the body of the solid. The distance
between C(&, n) and A(x, y, z) is provided as
1/2
CA=p={E-0"+m-»'+2} " (21)
The potential functions [26], each satisfying Laplace’s equation, are defined as follows,
F =[5 [q«(§.n)Qdédn
G =[5 [qy(§. mQd&dn (22)
Hi = Js [ p(§.m)Qd&dn
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Fig. 5. The model of the elastic half-space.

where Q = zIn(p +z) — p, the normal force, x-axis tangential force and y-axis tangential force distributions are represented
by p(§, n). qx(&§, n) and qy(§, n) acting on S, respectively.

F=9 — [ [qu& n)In (o +2)dEdn

G= “‘ = fsJay(E.m)In(p +2)dEdny (23)
H= ””1 =[5/ pE. m)In(p +2z)d&dn.
We have

oR  0G;  0H;

‘ﬁlZW"‘W'F@ (24)

and

oY1 O0F 090G oH
_ 9% _oF oG oH 25
v 0z 0x + ay + dz (25)
The elastic displacements uy, uy and u, at any point A(x, y, z) in the solid body are expressed in terms of the above
functions as follows:

Uy = e {28 - ¥ 0¥ L8
uy = e {29 - P+l 5 (26)
1

U= e { B+ (1 - 2v)¢r—zaz}

where G is the shear modulus and v represents the Poisson’s ratio.

3.2. Normal force of hertz equations for circular contact [27]

From a morphological view, the outline of a human finger consists of circle and rectangle patterns. In this section, we
approximate a finger's link as a rectangle with certain thickness W3 and length L3,and the finger’s tip as a curve with a
certain radius r, and the goal is to verify the best geometric relation between the finger’s tip and finger’s link for design
purposes. Accordingly, various configurations of combining circles and a rectangle are explored, to determine the best shape
of the fingertip based on the given analysis above through taking account of the fingertip grasp stability and the radius of
fingertip.

When constructing mathematical models in terms of evaluating the quality of grasping stability, we have to provide the
corresponding assumptions. One is that the magnitude of contact area between two elastic solids is quite small compared to
the dimension of objects and the radii of curvature. The other is that normal circular contact formed locally with orthogonal
radii of curvature leads to a circular contact for simplifying the calculations when two elastic solid objects come into contact.
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Fig. 6. Soft contact. At the beginning, without the load, two bodies just contact at one point (A). There are two points M; and M, being r away from the
common normal and being z;, z, away from the tangential plane between two bodies, respectively. When a force P is applied to loading along the normal,
the local deformation results in a circular contact surface with the radius a around the contact point (B). Due to the local deformation, M; and M, form
the same point M at the contact surface. u,; and u,, denote the displacements caused by the tangential force Q,(C).

As shown in Fig. 6, at the beginning, without the load, two bodies just contact at one point(A). There are two points
M; and M, being r away from the common normal and being z;, z, away from the tangential plane between two bodies,
respectively. According to the geometric constraints, we can obtain the following equations,

Ri—z1)’+r* =R}
(Rq 1)2 + T 27
(R2 —Zz) =+ T'Z = R%
If the points M; and M, is close, we have z; <« R{,z; < R;, and thus,
n=f
T (28)
2y = erz
The distance between M; and M, is
2
= 2
Z1+2h 2R, (29)

with Ric = % + Rlz, where R, represents the relative radius that expresses a summation of curvatures (or inverse radii). When
the surface is convey, its curvature is positive while the curvature of concave surface is negative. Regardless of either the
positive or negative symbols of radius, it represents an equivalent sphere in contact with a plane as long as R; is positive.
As depicted in Fig. 6(B), when a force P is applied to loading along the normal, the local deformation results in a circular
contact surface with the radius a around the contact point. We denote by w; and w, the displacements along the z;-axis
and z,-axis directions, respectively. The approximate distance § between O;and O, is

8:z1+zz+w1+a)2. (30)

According to the theory of elastic half space [28], the displacement of the point M, as shown in Fig. 6(B), is under the
normal force distribution q as follows,

_1-v dsd 31
w1_nE1 //qsdf (31)

where Eq, E, are the elastic moduli; vq, v, denote the Poisson’s ratios associated with each body respectively. However, the
integral should include the whole contact surface, similarly, the other displacement is described above. Thus,

1 r?
C C

. 1-v2  1-v2 .
with lc = Elvl + E;Z, where E. represents the contact modulus. We first have to calculate the normal force distribution g

for obtaining 8. As shown in Fig. 6, the height of each point that rests on the half-sphere surface made along the boundary
of contact surface represents the magnitude hof the normal force q. Thus, the pressure force g, of the centre O of the
contact circular can be described as q, = ka where k denotes the scale of the normal force distribution, as shown in Fig. 7.
The normal force of a point in the contact circular is equal to the product of the height h and the scale k and thus,

/qu: %/hds = %A (33)

with A = %(a2 —r2sin21r) where A denotes the area of the half circular along the chord mn. Substituting A into Eq. (33), we
can obtain the following equation,

2

1 TG M o 5o e T
nEc.z./o S 2 (@~ Psinty)dy =6 - 5o (34)
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A B

Fig. 7. Torsion of elastic objects acted by tangential forces.

Thus,
1 790/ 5 r
. 202 — =8 - —. 35
wE. 4a ( e-r ) 2R (35)
We integrate the total normal force P within the half sphere as
3P
qo = a2 (36)

We obtain the radius a of the circle that is related to the applied load P by the equation,

1
3PR:\ 3
= . 37
o= ( 4E, ) (37)
The normal displacement § is related to the maximum contact pressure by
2 1
a? 3P\3/1\3
0=—=(-— — .
Rc (41:}) (RC> (38)
Thus, we can obtain the normal stiffness as
1
16PR.E2 \ *
kn = (6956> (39)

which expresses the elastic properties of both bodies effectively as a series combination of springs since stiffness is propor-
tional to the elastic modulus for plain strain.

3.3. Incipient sliding of elastic bodies in contact

A tangential force used for a stationary contact generates a relative tangential displacement governed principally by
elastic deformation in the contact. Typically, small inelastic behaviour results from slip that always accompanies the elastic
deformation. All hertz equations are applied along the normal direction for elastic contact. As the traction at the contact
generates shear stress in the material, we can consider the contact shear modulus for simplifying the calculation. In the
description, the tangential traction has been assumed to have no effect upon the normal pressure.

A tangential force whose magnitude is less than the force of limiting friction (Q < uP, u is the coefficient of friction),
when applied to two bodies pressed into contact, will not give rise to a sliding motion, but nevertheless, will include fric-
tional tractions at the contact interface. Due to a tangential force distribution gx(&, 1) loading over the area S, the displace-
ments and tangential stiffness are deduced. The tangential force qy along the y-axis and the normal pressure p are both
taken to be zero. Combining Eqs. (22)-(26) together, we can obtain

1 0°F 0°F, 03F
the= 47rG{2 a2z T awaz| (40)
When the appropriate derivatives are substituted in equations, we get
1
=— M 41
= g [ [ axt&.m) x Magn (41)
i 1,12 x> _ (d-20¢E-»°
with M = st o T >3 PP
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If a tangential force Q causes elastic deformation without slip at the interface, then the tangential displacement of any
point in the contact area is the same. If Q acts on the load area S along the x-axis, this tangential displacement must also
be parallel to the x-axis,

2\
qx(r) = qo (1 - az) , (42)

with qg = % due to a concentrated tangential force Qyx = qxdédn acting at C(&, 7). Restricting the discussion to surface
displacements within the loaded circle (r <a), Eq. (41) is reduced to

= 5rc [ [ a6 n){ I }dédn (43)

where s2 = (§ —x)% + (n — y)2. We transfer the coordinates from (&, 1) to (s, ¢) to realize the surface integration as follows,

E24 2 = (X+5C0sP) + (¥ + ssing)?

- (44)
qx(s.¥) = qoa(ar® — 2Bs —5?) 12
with o? = a2 —x%2 —y? and B = xcos¢ + ysin¢. Eq. (43) then becomes
_ 1 2T pSy ;
iy = H/O /0 (s, $){ (1 = v) + vos’p }depds. (45)
The limit s; is given by a point lying on the boundary of the circle, for which
1
51:_13_,’_(0[2_,’_‘32)2. (46)
When performing the integration with respect to ¢ between the limits 0 and 2, so that for (r<a),
- qoa [“" 5 T(2-v)
x= 10 {(1 =)+ veos’p}d = R Tem (47)
Under the action of the tangential force, the relative tangential displacement Jx between two bodies is as follows,
Qx 2 - V1 2 - 1%
= —_ = — 4
Ox = Uy — Uy 8a ( el + G, ) (48)

where Gy, G, represent the shear moduli and v{, v, denote the Poisson’s ratios of the two bodies, respectively.

The tangential displacement is directly proportional to the tangential force. This is unlike the normal approach of two
elastic bodies which varies in a nonlinear way with normal load because the contact area grows as the load is increased.
The tangential stiffness k; is provided depending on the Hooke’s law k; = % as follows,

1

_ 2—1)1 2—V2 -
kt_8a( e ) . (49)

Any attempt to increase the tangential force Q in excess of the friction force wP causes the contact to slide.

3.4. Torsion of elastic bodies in contact

We investigate tangential forces acting on the load area S in a circumferential direction which is perpendicular to the
radius. A situation which is qualitatively similar to those discussed in the previous section occurs when two elastic bodies
are pressed together by a normal force and are then subjected to a varying twisting or “spinning” moment about the axis of
their common normal. The twisting moment causes one body to rotate around the z-axis through a small angle relative to
the other. Slip at the interface is resisted by frictional traction. Under the action of a purely twisting couple M, the state of
each body is purely torsional. For the circular region shown in Fig. 7(B) we shall assume that the magnitude of the traction
q(r) is a function of r only. Thus

Gy = —q(r)sin® = —q(t) ¢;

50
gy = q(r)cos = q(t)5. (50)
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Table 1
Properties of fingertips.
Material Young's modulus E(pa)  Shear modulus G(pa)  Passion ratio  Contact radius(mm)
Fingertip Rubber 2.5e6 8.3e5 0.5 10
Object Rubber 2.5e6 8.3e5 0.5 [—o00, —20],[20, oo]
Polyethylene  1.1e9 3.87e8 0.42 [—o0, —20],[20, oo]
Aluminium 7.1e10 2.67e10 0.33 [—o0, —20],[20, 0]

The displacements uy, uy and u, are described in the form of Eq. (26), where H =0 and F, G are given by

F=— [/ %2nln(p +2)dé dn;

4 (1)
G=~ [/ TEIn(p +2)d§ dn.
Due to the reciprocal nature of F and G related to coordinates, we have g—}c, = —g—i and thus, the displacements on the
surface can be simplified as follows,
- P) 2 t .
= pig B = sk 57 i “ndsd
o d 2 .
Iy = 3255 = mc Jo Jo “PEdsdgp: (52)
u; =0.

As shown in Fig. 7(B), due to the point B(x, 0) and ? = sin ¢, the displacement uy in Eq. (52) vanishes. Finally, we just
have the component i, expressed in a purely torsional deformation. The force distribution to produce a rigid rotation of a
circular region is provided as

1

q(r) =qor(a*-1*) *, r<a (53)
with gg = 2L where q(r) acts in a circumferential direction at all points in the contact circle. Substituting in Eq. (52), we
~ 4ma3 A
can obtain the surface displacement as
qo 2 pS
u Ndsd¢ (54)

yZZJTGO 0

with N = (a% — x2 — 2xscos ¢ — 52)’% (x +scos®).
The integral form can be given as
- T qoX
i = do

and thus, in view of the circular symmetry we can write
- Tqor
Uy = ac (56)
The force in Eq. (53) leads to a resultant twisting moment
a
4

M, = / q(r)2mrdr = §7Ta4qo. (57)

0

For one body, we have iiy; = B¢r. Thus, the moment produces a rotation of the loaded circle through a resultant angle g
which is given by

1 1 )MZ (58)

3
ﬂ:ﬂ1+ﬁzzﬁ(a+a el

where 8, B, represent the rotation angles of two bodies; Gy, G, denote the shear moduli of two bodies, respectively. Due
M,

to the Hooke’s law k; = F the torsional stiffness is
16 501 1\7'
k=30t g) )

4. Effects of factors on stiffness coefficients

In this section, the stiffness coefficients developed in the above section are evaluated with respect to the material and
geometrical properties of the contact surface of the gripper and grasped objects. The fingertip is assumed to be spherical
using rubber materials, and its properties are listed in Table 1. In terms of the grasped object, they are selected to have
various material properties such as rubber, polyethylene as well as aluminium, and different local contact curvatures.

We note that the differences between curvature and radius, curvature is the signed inverse of the radius of curvature
at the point of contact, positive for convex surfaces. Fig. 8 illustrates that the fingertip contacts objects with various local
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Fig. 8. Fingertip contact model with objects, the objects have different local curvatures.
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Fig. 9. Effects of object local curvatures and object materials on the stiffness coefficients ky, k¢, k:.

curvatures. The radius of fingertip and object are Ry and R, respectively, and R, > 0 when it's convex and R, <0 when it’s
concave. R, = oo when object is flat.

As shown in Fig. 9, according to the models of the effects of the materials and local curvatures of the objects on the
stiffness coefficients k;,, k; and k¢, these three stiffness coefficients improve with the normal force P increasing for the fixed
radius ratio and materials. Similarly, with the Young’'s modulus and shear modulus increasing, these stiffness coefficients
will become larger. The contact between the fingertip and an object with a negative radius ratio results in higher stiffness
coefficients compared to the contact with a positive radius ratio. The comparison between kp, k; and k; indicates that the
magnitudes of k, and k; are much larger than that of k; for the same materials and radius ratio. For k, and k¢, the values
resting on small normal force ranges with less than 0.2 N rise more rapidly than the values that fall into the big ranges
with more than 0.2 N. The variation of k, and k; is nonlinear as materials and local curvatures change, while k; varies at
a linear mode with local curvatures and Young’s modulus, shear modulus changing. The stiffness is provided depending on
the Hooke’s law such as k;, = ’g ke = g"—x, ky = Mz As shown in the fourth picture of Fig. 9, when the normal force P is 0.5N,
the stiffness k; is around 4000 N/m for the rubber materials(E =2.5e6). The deformation is around 0.125 mm. The minimum

radius of object is 10 mm. The radius is at least 80 times bigger than the deformation. The theoretical model and psychical
model are consistent.
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Fig. 10. Three finger grasping configuration.

5. Experiments and discussions of grasping stiffness evaluation

A cylindrical or spherical object is considered as a general represent object [7,29] in the geometric models due to the
following reasons. The surface of a cylindrical or spherical object is continuous and convex so that each link just has at most
one contact point. We can use a cylindrical or spherical object with just one variable (a radius) to simplify the geometrical
model formulation and calculation. The other strategy of simplifying the model is that the normal forces at three contact
positions are the same.

We build a compliance model at each contact to measure the stability quality of the grasping system. The Cartesian
stiffness matrix at each contact is applied to describing the force-displacement characteristics. When a grasp is regarded
as a potential system, the matrix with second partial derivatives of the associated potential energy provides us insight into
the grasping stability. If this matrix, also called the grasp stiffness matrix [4], is positive definite, the grasp is stable being
subjected to small disturbance.

Here we use a classic example of three fingertip grasping to evaluate the effectiveness of the stiffness-matrix based sta-
bility evaluation approach. As shown in Fig. 10, three fingertips are applied to grasping a spherical object which is a typical
application scenario adopted in other researches [4]. The grasping system has realized a static equilibrium. The fingertip
material is selected to be soft material that has the same material property used in [30]. The spherical object material is
assumed to be aluminum without the loss of generality, as found in Table 1. In addition, the radius of fingertip is 10 mm;
the spherical object has various local contact curvatures, but the minimum distance between the contact point to the cen-
ter of object remains the same, which is 40 mm. Referred to the derivation of the contact stiffness coefficients, the contact
stiffness matrices are integrated into the global grasping stiffness matrix using adjoint coordinate transformation.

Global coordinate frame {O —xyz} is attached at the centre of mass, and local contact coordinate frame
{Gi—xyz}(i=1,2,3) is attached at each contact point with z-axis pointing to the centre of mass for a purpose of sim-
plification (see Fig. 10). Thus the grasping stiffness matrix can be written as

K=Y2,(Ado) "Ki(Adeo) s

R 0 60
Adey— | Feo | (60)
Pc,-oRc,-o Rc,o

The positions of three fingertips can be obtained using active coordinate transformation from {C; — xyz} to {O — xyz}. The
initial coordinate transformations of them are defined as

Reo=Ry(Z (-1 +3):

61

Po=[0 0 Ry (61
where Ry and R, represent the general rotation and the displace from the centre of object and the contact position, re-
spectively. For the construction of the grasping stiffness matrix K, it is noticed that its properties are determined by two
factors, including the magnitude of normal force f, which determines the values of contact stiffness coefficients, as well as
the spatial configuration which is represented by Adc,. In accordance with this, their effects are examined separately on the
properties of K.

Further, following the criteria of evaluating the quality of grasping stability proposed in [4], we utilize the area enclosed
by three contact points to be the benchmark function and compare with the minimum eigenvalue of stiffness matrix of
each configuration built by ourselves. It is noticed that the optimal solution is the symmetric grasp with three contact
points located on a big circle, thus we will pay special attention to this configuration and verify whether it also preserves
the biggest index of our approach.
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Fig. 12. Comparison of minimum eigenvalues with various contact local curvatures.

Case A: Grasping stability based on minimum eigenvalue comparisons with various contact local curvatures.

The first case is completed by evaluating fingertip grasps with three different local contact curvatures at the optimal
grasping configuration, which is shown in Fig. 11. The contact curvatures include normal outbound surface, flat surface
and inbound surface. In addition, for each configuration, the contact force increases from ON to 10N, and the minimum
eigenvalue of constructed grasping stiffness matrix is obtained accordingly. The comparison result is further shown in Fig. 12.
From the comparison result, we can see the minimum eigenvalue increases with the growth of the contact force. Then
comparing the effects of local contact curvatures, we identify that the one with inbound surfaces results in the biggest mini.
Eigenvalue to realize the best grasping stability among three different classic grasping configurations.

Case B: Evaluation comparisons based on the minimum eigenvalue and the enclosed area proposed in [4].

The second comparison is completed by comparing fingertip grasps with various grasping configurations using the stan-
dard spherical object. To evaluate the effectiveness for each grasping configuration, we compare the minimum eigenvalue
of constructed grasping stiffness matrix with the grasping area [4]. Since the symmetric grasp with three contact points lo-
cated on a big circle of the spherical object is identified as the optimal solution in terms of the grasping area, we would like
to verify whether it leads to the biggest minimum eigenvalue index or not. Without the loss of generality, a total number
of 31 types of grasping configurations in the big circle of the spherical object were selected, with their grasping areas and
minimum eigenvalues compared. Fig. 13 presents two types of grasping, the one with grey area represents the optimal grasp
while the comparison grasp with light blue area is selected from 1 of the other 30 grasping configurations which gives a
relative small grasping area.

Further, the selected 31 types of grasping configurations are compared in Fig. 14. The 31 grasping configurations are
determined as follows. The 1st configuration is the optimal grasping configuration, and the rest 30 configurations are gen-
erated using the rand algorithm. We make an additional modification by equaling the value of the grasping area and mini-
mum eigenvalue of grasping stiffness matrix in the optimal configuration. We repeat 6 groups of comparison experiments by
choosing different grasp configurations randomly. As illustrated in Fig. 14, for all the comparison experiments, there are the
consistencies between grasping area index and minimum eigenvalue index through all grasping configurations. In addition,
both the grasping area and minimum eigenvalue of the symmetric grasping configuration can achieve the highest values
among all the values, which verifies that such grasp can realize the best grasping stability. Actually, unstable configurations
occur under some configurations. For example, in the fifth and sixth pictures of Fig. 14, several eigenvalues are around O,
that is, their grasping matrices are semi-definite and thus, these grasps are unstable under the grasping configuration with
the biggest circle of the spherical object. The grasping area is also close to 0.



H. Dong, C. Qiu and D.K. Prasad et al./Mechanism and Machine Theory 134 (2019) 625-644 639
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Fig. 13. Three finger grasping configuration.
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Fig. 14. Comparison of mini. eigenvalue with various contact local curvatures.

6. Conclusion and future work

A quantitative analysis of grasp stability is presented and discussed via constructing the grasp stiffness. The presented
evaluation model is applicable to assess the stabilities of the fingertip grasp. The proposed approach of evaluating grasping
stability is verified by comparing with the traditional method based on the grasping area. Currently, the proposed model is
not involved in static equilibrium. In future, we also will improve this mathematical model to be used for measuring the
static equilibrium and the quality of grasping stability at the same time. Moreover, we will explore the effect of the case
that different normal forces putting on the object on the grasping stability.
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Fig. 15. Fingertip contact model with objects, the objects have different local curvatures.

Appendix
1. Derivations

For a robotic platform, a spatial force can be described using a wrench in screw theory. It contains a linear component
(pure force) and an angular component (pure moment), which has the form as

m

where w is a 6 x 1 vector whose primary part f = [fy, fy, fz]Tis a 3 x 1 force vector and the second part m = [my, my, m;]”
is a 3 x 1 moment vector. The twist T is provided as

8
T= [9} (A2)

where 6 = [0, 0y,6;]" is a 3 x 1 rotational displacement vector and § = [8y, 8y, 8;]T is a 3 x 1 translational displacement
vector. both w, and wj, are written using the Plucker ray coordinates. The external force w and the deformation twist T are
written using Plucker axis coordinates. A is the elliptical polar operator [31] as

0 &
A= A3
L o) (a3)
A has some properties as follows,
A=A
A = AT (A4)
AA=1]

For the adjoint matrix Ad,, stated above, it has the following properties as
Adgy = A(Adgy ") A
Adgy = A(Adg, ')A (A5)
Adgy' AAdy, = A

A. Construction of global stiffness matrix

As shown in Fig. 15, the external force w and the resulted deformation twist T are presented in the coordinate frame {B,
Xp, Xp, Xp}, Which are symbolized as wj, and T, the relationship is provided as
Tb = wab (AG)

where C, is the compliance matrix in the coordinate frame {B, x;, x;, x;} [24]. The external load and deformation twist are
written in the new coordinate frame as wq and Tg, as shown in Fig. 15. The relationship between w, and wj, can be written
as

Wq = Adabwb (A7)
Also, for the deformation twist T, and T, we have a similar coordinate transformation formula as
ATy = Adyp AT, (A.8)
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Depending on the properties of A and Ad,, shown in Egs. (A.3) and (A.5), we simply Eq. (A.8) as

To = (AAdg, AT, = Ad [T, (A.9)
Substituting Eqgs. (A.7) and (A.9) into Eq. (A.6), we can obtain

Ady, T, = C,Ad, "W (A.10)
Further,

T, = Adg, " CyAdg, ' Wq (A11)

Since the compliance matrix C in the coordinate frame {A, X4, X4, Xq} has the form T, = C,w,, we can then get the rela-
tionship between C; and C;, as

Co=Ady "CAdy, " (A12)
We simply by just reversing Eq. (A.12) as

C, ' = AdyGy Ad,," (A13)
According to the relationship between stiffness and compliance matrix C = K~1, Eq. (A.12) can be further written as

Ko = Ad g KyAdg," (A14)

B. Construction of global grasping stiffness matrix

When an external load w, is applied at an object, a deformation T;(i=1,...,m) and a displacement T, of the object
arises at the contact area. Thus, the relationship between T, and the elements T;(i=1, ..., m) can be provided as
m
T.=)T (A15)
i=0

which indicates T, is the aggregation of T; in the same global coordinate frame {O, x, y, z}. We can also use a global compli-
ance matrix C. to establish the relationship between the twist T, and the wrench w, as

T, = CoWe. (A.16)

According to the coordinate transformation law, the deformation T; of the ith flexible element can be represented in the

local coordinate frame {O;, x;, y;, z;} and it is symbolized as T,-/. Similar to Eq. (A.9), the relationship between T; and T,~’ can
be written as

T';=Ad]"T;
P e (A7)
AdLT =T,
Correspondingly, the relationship between w; and w;’ is also provided as
w; = Ad'wy (A18)
where Adi (i =1, ..., m) is the adjoint transformation matrix between the local coordinate frame {O;, x;, ¥;, z;} and the global
coordinate frame {O, x, y, z}, it has the form by combining Eqs. (A.15) and (A.17) as
m
T.=) AdT,. (A19)
i=0
In contrast, the external load applied at the end effector is transmitting to each compliant element
W, = Ad;eWe (A.20)

where w, is the external load in the global coordinate frame, w; is the transmitted internal load applied at the ith flexible

element which is expressed in the local coordinate frame {O;, x;, ¥;, z;}. We have the relationship between w; and Ti/ through
the compliance matrix as

T = C,-W/- (A.21)
1 1

where C; is the compliance matrix. Substituting Eqgs. (A.21) and (A.16) into Eq. (A.19), we can obtain
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ie

m
CT. =Y AdLCw; (A22)
i=0

which can be further deduced by substituting into Eq. (A.20) as,

m
Cewe = Y _ Ad,GAd;eWe. (A.23)
i=0
Further,
m
Ce =) Adj,GAd,. (A.24)
i=0
As shown in Fig. 15, we can obtain the external wrench w, and each wrench w;(i=1,..., m) from the contact finger as
m
We= > w. (A.25)
i=1

Substituting Eq. (A.18) into Eq. (A.25), we can obtain
m
we =y Ad'w;. (A.26)
i=1
By introducing the coordinate transformation matrix Ad;,, we have

m
T = AAdi AT, = Ad,,'T.. (A.27)

i=

—_

Through the stiffness matrix as
w; = KT (A.28)

where K; is the stiffness matrix of the ith flexible element. Similarly, we can define the global stiffness matrix K. of the
whole grasp system as

We = K. To. (A.29)

Substituting Eqgs. (A.28) and (A.29) into Eq. (A.26), we have

m
KT, =Y Ad'KT, (A.30)
i=1

which can be further simplified by substituting into Eq. (A.27) to obtain

m
Ke =Y Ad,'KAd,". (A31)
i=1
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2. Descriptions of symbols

Symbols Descriptions

w the original force sensor data

f the force from the force sensor

m the moment from the force sensor

e a point in space defined with respect to O;

S the surface

n a normal unit vector

v the gradient operator

C the contact centroid

fc and mc the force and moment applied at C

K constant

fn the normal force

fi the tangent force

A a constant coefficient matrix

R a scale factor

Sar Sp the symbols of screws written using Plucker ray coordinates

Adgy, the adjoint transformation matrix

Rap the 3 x 3 rotation matrix

Py the anti-symmetric matrix of translation vector p,

Pab [px Dy pz]T

Roo, and Ro,¢ the 3 by 3 rotation matrixes representing coordinate frame {O; — xyz} and {C — xyz} with

respect to {O — xyz} and {07 — xyz}

Py and Py, the anti-symmetric matrixes representing the cross products of position vectors poo, and po,c

we the wrench

fc and mc the loading force and moment in the contact area

Ady,c the adjoint matrix

K the contact stiffness matrix in the coordinate frame {C — xyz}

kn, ke and k; the stiffness coefficients

S a closed area

A(x,y,2) a point within the body of the solid

p&.n), ax(&.n) and q, (&, 1) the normal force, x-axis tangential force and y-axis tangential force distributions

Uy, uy and u, the elastic displacements at any point A(x, y,z) in the solid body

G the shear modulus

v the Poisson’s ratio

W3 thickness

L3 length

r a certain radius

Rc the relative radius that expresses a summation of curvatures (or inverse radii)

P a force applied to loading along the normal

wy and w; the displacements along the z;-axis and z,-axis directions

1) the approximate distance

Ei,E> the elastic moduli

V1, Vo the Poisson’s ratios associated with each body

E. the contact modulus

q the normal force distribution

A the area of the half circular along the chord mn

P the total normal force

) the normal displacement

i the coefficient of friction

ax(&,1m) a tangential force loading over the area S

Q a tangential force causing elastic deformation without slip at the interface

51 The limit given by a point lying on the boundary of the circle

Sx the relative tangential displacement

Gy, Gy the shear moduli

M, a purely twisting couple

B, B2 the rotation angles of two bodies

K the grasping stiffness matrix

Ry, R, the general rotation and the displace from the centre of object and the contact position
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