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Figure 1: Given challenging in-the-wild videos with low resolutions, our model(HPOF) can reconstruct accurate and realistic
3D human pose from high-speed movement like skating game, where self-occlusion and motion blurs are common.

ABSTRACT
This paper introduces HPOF, a novel deep neural network to re-
construct the 3D human motion from a monocular video. Recently,
model-based methods have been proposed to simplify the recon-
struction task by estimating several parameters that control a de-
formable surface model to fit the person in the image. However,
learning the parameters from a single image is a highly ill-posed
problem, and the process is ultimately data-hungry. Existing 3D
datasets are not sufficient, and the usage of 2D in-the-wild datasets
is often susceptible to the inadequate precision of manual annota-
tions. To address the above issues, our method yields substantial
improvements in two domains. First, we leverage optical flow to
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supervise the 2D rendered images of predicted SMPL models to
learn short-term temporal features. Besides, taking long-term tem-
poral consistency into account, we define a novel temporal encoder
based on a dilated convolutional network. The encoder decomposes
the learning process of human shape and pose, first guarantees the
invariance of the body shape, and then simulates a more reasonable
forward kinematics process on this basis to achieve more accurate
pose estimation. In addition, an adversarial learning framework is
applied to supervise the reconstruction progress in a coarse-grained
way. We show that HPOF not only improves the accuracy of 3D
poses but ensures the realistic body structure throughout the video.
We perform extensive experimentation to demonstrate the supe-
riority of our method and analyze the effectiveness of our model,
surpassing other state-of-the-arts.

CCS CONCEPTS
• Computing methodologies → Motion processing; Motion
capture; •Computer systems organization→Neural networks.

KEYWORDS
pose estimation, motion capture, monocular video, optical flow

Full Research Paper  ICMR  ’21, August 21–24, 2021, Taipei, Taiwan

144

https://doi.org/10.1145/3460426.3463605
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460426.3463605&domain=pdf&date_stamp=2021-09-01


ACM Reference Format:
Bin Ji1,2, Chen Yang2, Shunyu Yao2, Ye Pan1,2. 2021. HPOF: 3D Human
Pose Recovery from Monocular Video with Optical Flow. In Proceedings
of the 2021 International Conference on Multimedia Retrieval (ICMR ’21),
August 21–24, 2021, Taipei, Taiwan. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3460426.3463605

1 INTRODUCTION
With the rising interest in personalized VR and immersive experi-
ences comes the need to create high-quality motion capture systems.
To ensure high-fidelity recovery, complicated marker-based sys-
tems are preferred for professional conditions. Specialized hardware
like magnetic trackers, optical cameras, inertial sensors, etc., is in-
volved in these systems. Not only are these systems challenging
to deploy and costly, but they come with a large of pre-processing,
which hinders their further popularization. On the other end of
the spectrum, recent studies develop data-driven learning-based
approaches that are efficient and low-cost to perform 3D human
pose estimation from the monocular RGB video[37, 50]. For this
reason, recovering the 3D human motion from a single RGB camera
is taking center stage in this field.

Most of the learning-based methods can be categorized into
two classes: skeleton-based approach and model-based approach.
Skeleton-based methods learn a sequence of 3D skeleton features
directly from video clips. They take into account the hierarchy
information of articulated kinematics[41, 42] or anthropometric
priors like the symmetry and invariance of the skeleton’s bone
lengths[54] to infer the 3D joint positions in the camera coordinate
and further model the dynamics of the skeleton kinematic tree.
However, learning the abstract skeleton features is a highly non-
linear process. These algorithms do not contain enough information
to reconstruct a realistic body structure or drive a skinned virtual
3D character. Other issues shift their spotlight towards model-based
approaches. With a parametric human model like Skinned Multi-
Person Linear (SMPL) model or Adam model[23, 34], model-based
approaches[24, 25, 28, 29, 48, 73] can encode more anthropometric
knowledge. In this way, the trained neural network can regress
more realistic model parameters to fit the human model to the
object in the RGB video. However, existing model-based methods
inherently encounter the following two problems: (1) regressing
rotation matrices is challenging and suffers from insufficient 3D
in-the-wild ground truth, and (2) the phenomena of model-image
misalignment are widespread because of the erroneous bone length
estimation and 3D keypoint estimation.

To tackle these challenges, we look into the optical flow to take
full advantage of the parametric model that subsumes more con-
straints like body shape and proportions of limb size. Instead of
settling for indoor 3D datasets combined with diverse in-the-wild
videos containing 2D manual keypoint annotations [21, 28, 29],
some methods attempt to leverage optical flow to compute the
discrepancy between the adjacent frames [62, 69]. It inspires us to
exploit optical flow as a valuable feature to supervise the recon-
structed 3D human mesh. On the one hand, optical flow can ensure
the temporal consistency of the predicted parameters. On the other
hand, it can regularize not only joints and bone lengths but shape
of the mesh model. And the model with a well-predicted shape can,

in turn, promote pose estimation. In this way, we close the loop
between pose and shape learning.

In this work, we introduce HPOF, a novel temporal network
trained to perform single-person 3D motion reconstruction from
the monocular RGB video. Instead of directly extracting skeleton
information, our network learns to regress model parameters about
shape and pose. The core idea of HPOF is to propose a differentiable
forward kinematics(FK) solution via the pose and shape decompo-
sition. First, a temporal encoder is used to learn the bone length
invariance in shape parameters and position continuity in pose
parameters. Then, on account of the guarantee of bone length in-
variance, FK is naturally embedded into our network. Given the
corresponding 3D joint position ground truth, HPOF can realize
the inverse kinematics(IK) process in its backpropagation to learn
the regression of pose parameters.

On the other hand, following the work of [21, 28, 29], we uti-
lize 3D datasets combined with in-the-wild 2D datasets to enhance
the diversity and realism of training videos. Considering the size-
able temporal continuity error caused by manually annotated 2D
datasets, we use the optical flow as an extra 2D cue of motion trajec-
tories, improving the robustness and generality of HPOF. Besides,
with the poses sampled from the large-scale 3D motion-capture
dataset[36], we implement a motion discriminator to evaluate the
motion sequences as a whole. Our model is supervised by regression
losses along with an adversarial loss to minimize the reconstruc-
tion error between predicted and ground-truth 3D keypoints, 2D
keypoints, control parameters, and motion trajectories.

The main contributions of this paper are summarized below:

• We introduce HPOF, a novel end-to-end baseline for 3D
human motion reconstruction in video based on optical flow.

• We propose an effective optical-flow-based method to gener-
ate rich descriptive 2D supervision information to constrain
the shape and pose of the parametric model.

• Our method establishes a positive correlation between pose
and shape prediction and improves their prediction substan-
tially at the same time. It mitigates the problems of rotation
parameter regression and model-image alignment.

• Our method surpasses other state-of-art models in terms of
accuracy and smoothness.

2 RELATEDWORK
With the boom in the development of deep neural networks, numer-
ous research has been devoted to 3D human motion reconstruction
in the last few years. Prior advances mainly focused on 2D pose
recognition[7, 40, 57, 68], and improved 2D pose recognition has,
in turn, facilitated the more challenging task of 3D human pose
estimation[8, 44, 49, 51, 60].

Skeleton-based 3D pose estimation: Early paradigms in this
field cast 3D human pose estimation as a task of locating the 3D
joints on the kinematic tree. Accurate depth map and pose esti-
mation algorithms [7, 55] are proposed to estimate the position
of human joints, which provides new inspiration for the research
of motion recognition based on human joints. The methods of 3D
skeleton estimation can be mainly divided into two categories: one-
step methods and two-step methods. One-step methods focus on
directly estimating the 3D skeleton pose from the input image.
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In comparison, two-step methods estimate 2D skeleton locations
first and then upgrade the 2D joints to 3D locations by a learned
dictionary of 3D skeleton [1, 63, 75] or regression [12, 37, 45, 58].
3D skeleton representations vary from 3D Heatmap [50], location
map [38] to 2D Heatmap with depth region [74]. Recently, Motion
capture (Mocap) and other technologies have been used to collect
accurate data and corresponding ground truth, contributing to the
impressive performance of these methods. However, one of the
skeleton-based 3D pose estimation challenges is that semantically
similar actions may not necessarily be numerically similar. The
human structural information implicitly estimated by a model may
not be realistic.

Model-based 3D pose and shape estimation: The parametric
human body model contains abundant prior knowledge of the
human body. Many pioneers have been committed to predicting
the natural 3D pose and shape through a parametric human body
model [3, 35, 46]. Compared with the direct regression of 3D human
shape and posture [30, 39, 65], adopting a parametric model can
reduce the prediction difficulty and provide more convenience for
downstream applications since the resulting model is controllable
and reasonable. Bogo et al. [5, 32] propose the first method to
automatically estimate the 3D pose and shape of the human body
from a single unconstrained image. Experiments show that 2D joints
alone carry a large amount of information about body shape. This
method later gets further developed and extended [33, 43, 46, 52,
64, 65, 71]. To solve the depth ambiguity [5, 32] caused by the input
RGB image, many algorithms try to introduce various intermediate
variables to improve their performance, such as 2D heatmap input
[64], keypoints, silhouettes [52] and semantic part segmentation
[44]. Choutas et al. [10] propose ExPose with body-driven attention
to reinforce regression on motion as well as hands. Furthermore,
some studies exploit temporal context to acquire better performance
in video tasks [4, 28].

Optical Flow in Pose Estimation: A key advantage of our ap-
proach is to constrain the trajectory of a surface model through the
synthetic optical flow between successive frames. Several works
have been presented exploiting optical flow for pose estimation.
Brox et al. [6] use optical flow for 3D pose tracking of rigid ob-
jects. At the same time, Fragkiadaki et al. first [13] compute an
articulated optical flow field to deal with large part rotations. Tung
et al. [62] differentiably match the 3D motion vector projections
against their estimated 2D optical flow vectors to realize end-to-
end self-supervised learning of motion reconstruction. To enforce
photometric consistency in the model textures, Xiang et al. [69]
extract the projection of fitted mesh models on the input images
and use optical flow to compute the discrepancy between these
textures. Previous optical-flow-based methods are either limited
to the coarse application of sparse optical flow or require sophis-
ticated calculations like vertex visibility estimation and texture
extraction. Our approach applies optical flow to the rasterization
of the mesh model in a simple yet effective and feed-forward way,
which realizes pixel-wise fine-grain supervised learning.

3 METHOD
In this section, we present the solution for 3D human pose re-
construction of video sequences. Fig. 2 shows an instantiation of

the proposed HPOF. First, in §3.1, we briefly introduce the pre-
knowledge of forwarding kinematics(FK) and its combination with
the SMPL model. In §3.2, we present the overall architecture of
HPOF. Then, in §3.3, we elaborate on our proposed solution for
applying optical flow to supervised learning. Finally, we provide
the practical implementation details in §3.4.

3.1 Preliminary
Forward Kinematics: Given the relative rotation matrix sequence
R = {𝑅𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘),𝑘 }𝐾𝑘=1, 𝑅 ∈ R3×3 and initial pose set T = {𝑡𝑘 }𝐾𝑘=1,
𝑡 ∈ R3, forward kinematics refers to the process of calculating the
joint positions 𝑝𝑘 ∈ R3 from the joint rotations.

𝑝𝑘 = 𝑅𝑘 (𝑡𝑘 − 𝑡𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘) ) + 𝑝𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘) (1)

where K is the number of joints, 𝑅𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘),𝑘 means the rotation
matrix of leaf joint k relative to its parent joint parent(k), 𝑅𝑘 is the
global rotation matrix of joint k, and can be computed in a recursive
manner: 𝑅𝑘 = 𝑅𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘)𝑅𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘),𝑘 .

SMPL Model: In this paper, we try to fit a SMPL model to the
human silhouette in the target image. SMPL has been extensively
applied in pose estimation tasks [14, 22, 47]. The 3Dmeshmodel can
be controlled by parameters Θ = (𝜃, 𝛽) ∈ R3𝐾+10, where 𝜃 ∈ R𝐾×3

are the pose parameters representing the relative rotations of K-1
joints concerning their parent joints and global body rotation of
the root joint in the form of axis-angle, 𝛽 ∈ R10 are the shape
parameters that consist of the first ten orthogonal bases of PCA
feature space. SMPL first transforms the axis angle ®𝜃𝑘 into rotation
matrix 𝑅𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘),𝑘 for each joint k using the Rodrigues’ rotation
formula:

𝑅𝑝𝑎𝑟𝑒𝑛𝑡 (𝑘),𝑘 = I + 𝑠𝑖𝑛( | |𝜃 𝑗 | |) [ ®̂𝜃 𝑗 ]× + (1 − 𝑐𝑜𝑠 ( | |𝜃 𝑗 | |) [ ®̂𝜃 𝑗 ]2
× (2)

where I is the identity matrix, ®̂𝜃 =
®𝜃

| | ®𝜃 | |
is the unit vector and [ ®𝜃 ]×

is the skew symmetric matrix of ®𝜃 . Then, we compute the forward
process in homogeneous coordinates like:

𝐻𝑘 =
∏

𝑗 ∈𝐴(𝑘)

[
𝑅𝑝𝑎𝑟𝑒𝑛𝑡 ( 𝑗), 𝑗 𝑡 𝑗 − 𝑡𝑝𝑎𝑟𝑒𝑛𝑡 ( 𝑗)

0 1

]
(3)

𝑝𝑘 = 𝐻𝑘 [: 3, 3] (4)
So it is convenient to perform the FK progress P = 𝐹𝐾 (T ,R)
in a one-shot recursion and returns the 3D positions of K joints
P = {𝑝𝑘 }𝐾𝑘=1, 𝑝 ∈ R3. In this way, the differentiable FK function
converts shape and pose parameters of SMPL into 3D joint positions.

Combination of FK and SMPL: The existing ground-truth
dataset of SMPL parameters is insufficient for the efficient learning
of our network. To mitigate the problem, the above FK solution
is integrated into HPOF. HPOF supervises the predictions of 3D
keypoint locations and further learns accurate pose parameters by
the backpropagation of the FK layer. Because errors will accumulate
along the kinematic tree during the FK process, first we need to
ensure the skeleton consistency. Details will be introduced in §3.2.

Given Θ = (𝜃, 𝛽), SMPL mesh vertices𝑀 ∈ R𝑛×3 are the output
of a differentiable function M(𝜃, 𝛽), with n=6890. Moreover, these
vertices have corresponding mesh faces 𝑓 ∈ R𝑁×3, where N=13775.
It is worth noting that SMPL finally predicts 49 joint locations, 24
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Figure 2: HPOF architecture. HPOFfirst uses an iterative regressor to extract per-frame SMPLpose and shape parameters. Then
the extracted parameters of past and current frames are fed into a temporal encoder trained to tune the skeleton inconsistency
with 𝐵𝑠 and pose in-continuity with 𝐵𝑝 . Finally, an FK layer converts pose parameters to joint locations of SMPL model.

of them are obtained by FK and the rest are the linear combination
results of mesh vertices.

3.2 Network Architecture
The overall framework of HPOF is shown in Fig. 2. Given an input
video 𝑉 = {𝐼𝑡 }𝑇𝑡=1, where 𝐼𝑡 ∈ R𝐻×𝑊 ×3 can denote each frame
containing a single person, HPOF aims to decompose the learning
process of pose and shape parameters {Θ𝑡 }𝑇𝑡=1 of the SMPL body
model and substantially boost the 3D human motion reconstruction.
With an iterative regression convolutional neural network, we take
each frame 𝐼𝑡 as input and output parameters Θ𝑡 . Then we take
both past and current frame information into account and exploit
a new 2-stage network temporal encoder to learn the skeleton
consistency of shape parameters and motion continuity of pose
parameters. Following the work of Kanazawa et al. [24] and Kocabas
et al. [28], we further employ a sequence-based adversarial network
to discriminate between real and fake human motion sequences
from a coarse-grained level.

Iterative regressor: The intuition behind using an iterative
architecture is that pose parameters are tough to learn in a one-
shot forward. Given a frame 𝐼𝑡 , the regressor with a pre-trained
ResNet-50 backbone first yields features 𝑓𝑡 ∈ R1024 [15] fed into
the iterative module later to infer SMPL parameters recurrently. In
particular, given the concatenation of the image feature 𝑓𝑡 and the
prediction Θ𝑖𝑡 of 𝑖th iteration, the iterative module extract the offset
ΔΘ𝑖+1

𝑡 for the next iteration. Then the parameter set is updated by
Θ𝑖+1
𝑡 = Θ𝑖𝑡 + ΔΘ𝑖+1

𝑡 . In particular, parameters are first initialized by
the mean Θ̄, and the final estimation are denoted by {Θ1,Θ2,...,Θ𝑇 }.
We define the loss function of iterative regressor as:

𝐿𝑟𝑒𝑔 =

𝑇∑
𝑡=1

| |Θ𝑡 − Θ̂𝑡 | |2 (5)

temporal encoder: Since the single-view task suffers from
body occlusion and ambiguity in depth, single-image features are
not sufficient enough to yield plausible and accurate pose estima-
tion. We use a temporal encoder consisting of two stages: pose

smoother 𝑩𝒑 and skeleton controller 𝑩𝒔 to make the current frame
benefit from past frame information.

During training, Θ𝑡 is first decomposed into 𝜃𝑡 and 𝛽𝑡 . In par-
ticular, 𝜃𝑡 ∈ R24×6 is a 6D continuous rotation representation[76]
instead of axis angles. The sequence of {𝛽1, 𝛽2, ..., 𝛽𝑇 } will be first
fed into𝑩𝒔 tomitigate shape inconsistency. Since SMPLmeshmodel
has already been rigged with skeletons, the consistency of skele-
ton’s bone lengths can be guaranteed by that of shape parameters.

𝛽∗ = 𝑩𝒔 (𝛽1, 𝛽2, ..., 𝛽𝑇 ) (6)

Then 𝛽∗ will be broadcast to length T. The combination of set {𝛽∗}𝑇1
and {𝜃𝑡 }𝑇1 is fed into 𝑩𝒑 to generate more temporally coherent
results {Θ̃1,Θ̃2,...,Θ̃𝑇 }. Each Θ̃𝑖 benefits from past pose information:

Θ̃𝑖 = 𝑩𝒑 (Θ𝑖−𝑆+1,Θ𝑖−𝑆+2, ...,Θ𝑖 ) (7)

where 𝑆 is the receptive field of 𝐵𝑝 .
In the training phase, we supervise the pose parameters 𝜃 :

𝐿𝑠ℎ𝑎𝑝𝑒 =

𝑇∑
𝑡=1

| |𝜃𝑡 − 𝜃𝑡 | |2 (8)

and the shape parameters 𝛽 :

𝐿𝑝𝑜𝑠𝑒 = | |𝛽∗ − ¯̂
𝛽 | |2 (9)

where ¯̂
𝛽 is the average of the ground truth {𝛽1, 𝛽2, ..., 𝛽𝑇 }.

Besidies, we also consider more loss function terms about 2D,
3D joint annotations and acceleration as:

𝐿2𝐷 =

𝑇∑
𝑡=1

| |𝑥𝑡 − 𝑥𝑡 | |2 (10)

𝐿3𝐷 =

𝑇∑
𝑡=1

| |𝑋𝑡 − 𝑋𝑡 | |2 (11)

𝐿𝑎𝑐𝑐𝑒𝑙 =

𝑇−2∑
𝑡=0

| |𝑋𝑡 + 𝑋𝑡+2 − 2𝑋𝑡+1 − 𝑋𝑡 − 𝑋𝑡+2 + 2𝑋𝑡+1 | |2 (12)
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Figure 3: Instantiation of temporal encoder consisting of 𝐵𝑝 and 𝐵𝑠 . The input of 𝐵𝑝 contains pose, shape and cam
parameters(157 = 24∗6+10+3) for a recpetive field of 81 frames (B=3 blocks), while the input of 𝐵𝑠 are the shape parameters(10)
of each frames. For eachmodule, 157, 3𝐷1, 1024 denotes input channels 157, kernels of size 3 with dilation 1 and output channels
1024. In addition, the residuals are sliced from the head to match the output of the subsequent block.

where 𝑥 denotes 2D keypoints, 𝑋 denotes 3D keypoints. The accel-
eration loss is simple yet effective to provide temporal constraint
and assess the quality of temporal encoder in terms of acceleration.
Specifically, the total loss function of HPOF is written as :

𝐿𝐻𝑃𝑂𝐹 = 𝐿2𝐷 + 𝐿3𝐷 + 𝐿𝑠ℎ𝑎𝑝𝑒 + 𝐿𝑝𝑜𝑠𝑒 + 𝐿𝑎𝑐𝑐𝑒𝑙 + 𝐿𝐺𝐴𝑁 + 𝐿𝑜𝑝𝑡_𝑓 𝑙𝑜𝑤
(13)

where 𝐿𝐺𝐴𝑁 , 𝐿𝑜𝑝𝑡_𝑓 𝑙𝑜𝑤 will be explained below.
In practice, HPOF utilizes an one-dimensional convolutional

network as temporal encoder. An adaptive pooling layer firstly
functions as 𝑩𝒔 to collapse the temporal axis so as to keep the
shape parameters constant in the time domains. Then 1D convolu-
tion blocks with residual connection will be applied as 𝑩𝒑 to yield
smooth predictions over the temporal dimension. Our temporal
encoder realizes parallel processing of multiple frames input, which
is not possible with classic seq2seq recurrent models [9, 16]. More-
over, convolutional layers are dilated to expand temporal receptive
field 𝑆 . Its architecture is shown in Fig. 3.

In addition, Pavllo et al. [53] used 1D temporal convolution to
directly lift 2D joint positions into 3D, while we consider additional
skeleton consistency. On the other hand, Shi et al. [54] applied a
model to directly generate the consistant skeleton from 2D joint
positions, which is prone to overfitting issue. We solve the problem
by taking the intermediate result from iterative regressor as input
and feeding it to 𝑩𝒔 further.

sequence-based adversarial training: In order to further su-
pervise the generated human motions at the sequence level, HPOF
adopts a adversarial training strategy to discriminate whether the
predictedmotion trajectories embedded on themanifold of plausible
humanmotions. The discriminator𝑫 (·) takes as input the sequence

of pose parameters {𝜃1, 𝜃2, ..., 𝜃𝑇 } (either from groundtruth or pre-
diction) and outputs a value ∈ [0, 1] to judge whether the sequence
is rational. First, we need to train 𝑫 (·) with the objective:
𝐿𝐷 = E𝜃∼𝑝𝑑𝑎𝑡𝑎 [(𝑫 (𝜃1, 𝜃2, ..., 𝜃𝑇 ) − 1)2] + E𝜃∼𝑝𝑔 [𝑫 (𝜃1, 𝜃2, ..., 𝜃𝑇 )2]

(14)
where 𝑝𝑑𝑎𝑡𝑎 is the empirical distribution of real motion and 𝑝𝑔 is
the distribution of generated motion from HPOF.

The loss function that back propagated to HPOF architecture is:
𝐿𝐺𝐴𝑁 = E𝜃∼𝑝𝑔 [(𝑫 (𝜃1, 𝜃2, ..., 𝜃𝑇 ) − 1)2] (15)

3.3 Supervised-learning through Optical Flow
The intuition behind using optical flow is that fitting a full 3D mesh
model to 2D keypoint annotations suffers from manual labeling
noise. For two consecutive frames, optical flow refers to a 2D vector
field that matches the displacement of a point from the current
frame to the next. In this way, we exploit optical flow as the 2D
cues of motion flow in our training framework.

Recent progress in optical flow estimation can achieve good
performance [17–19, 56, 70]. We define O𝑡 = (𝑢, 𝑣) ∈ R𝐻×𝑊 ×2 as
the dense optical flow field of each frame estimated by the state-
of-the-art deep learning method RAFT [61]. Instead of directly
matching the sparse 2D projections of visible mesh vertex motions
between adjacent frames to optical flow vectors [62], we synthesize
the raster images of SMPL models without the background and use
the dense optical flow extracted from input images to regularize
the motion between them.

Given SMPL mesh vertices𝑀 = M(Θ) ∈ R𝑛×3, we first project
vertices onto the screen with a weak-perspective camera model as:

𝑞 = 𝑠
∏

(𝑅M(Θ)) + 𝑡 (16)
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Figure 4: Supervised-learning through optical flow. There are 4 steps to apply optical flow. First we estimate optical flow with
RAFT, then we generate images of mesh model without background and warp them with optical flow to get the warped image
of next frame, finally we calculate the loss and propagate it to the training process.

where 𝑞 ∈ R𝑛×2 are 2D projections of vertex locations, 𝑡 ∈ R2

and 𝑠 ∈ R represent translation and scale parameters of camera
parameters 𝑐 = (𝑡, 𝑠) that are learned by HPOF and 𝑅 ∈ R3×3 is a
global rotation matrix and

∏
presents orthographic projection.

To draw the image of SMPL on the screen, we adopt a neural
renderer network R(·) [27] as a differentiable rasterizer. The neural
renderer takes as input 𝑞𝑡 , mesh faces 𝑓 and texture𝑇 and generates
image𝑚𝑡 ∈ R𝐻×𝑊 ×3 via rendering from the 3D world as:

𝑚𝑡 = R(𝑞𝑡 , 𝑓 ,𝑇 ) (17)

Note that we use an ’artificial texture’ with gradient color to identify
different parts of model mesh in a simple yet effective manner,
rather than costly extract the texture map from the input image 𝐼𝑡 .
In this way,𝑚𝑡 filters out the background noise and contains only
the projections of 3D motion.

Then𝑚𝑡 will be warped under the guidance of O𝑡 and output
𝑚̂𝑡+1 ∈ R𝐻×𝑊 ×3, namely:

𝑉 (𝑥,𝑦, 𝑡) = 𝑉 (𝑥 + 𝑢,𝑦 + 𝑣, 𝑡 + 1) (18)

where 𝑉 (𝑥,𝑦, 𝑡) is the intensity of light at pixel (𝑥,𝑦) of 𝑚𝑡 and
𝑉 (𝑥+𝑢,𝑦+𝑣, 𝑡+1) is that of𝑚̂𝑡+1, which is treated as the groundtruth
of frame 𝑡 + 1. The loss function 𝐿𝑜𝑝𝑡_𝑓 𝑙𝑜𝑤 is defined as:

𝐿𝑜𝑝𝑡_𝑓 𝑙𝑜𝑤 =

𝑇∑
𝑡=2

L2 (𝑚𝑡 , 𝑚̂𝑡 ) (19)

where L2 demotes the Mean Square Error loss and all these oper-
ations are differentiable. In this way, optical flow transfers pose
knowledge of the preceding frame to provide short-term guidance
for the current frame.

3.4 Implementation Details
In this subsection, we elaborate more details about the training
and inference process of HPOF. Specifically, HPOF decomposes
the training procedure into two phases. In terms of the iterative
regressor, we use a ResNet-50 network to extract image features 𝑓𝑡 ∈

R1024 followed by an iterative module with 3 stages to infer SMPL
parameters. For the temporal encoder, we set the 1D convolutional
module with 3 blocks as is shown in Fig. 3, resulting in the receptive
field 𝑆 = 81. We also use Adam optimizer with the learning rate
of 1 × 10−5 and 5 × 10−5 for 3D regressor and temporal encoder
respectively. And they will multiply a factor of 0.6 if the estimation
does not improve formore than 5 epochs. Theweighting coefficients
are set as 𝜆2𝐷 = 300, 𝜆3𝐷 = 300, 𝜆𝑝𝑜𝑠𝑒 = 60, 𝜆𝑠ℎ𝑎𝑝𝑒 = 0.06, 𝜆𝑎𝑐𝑐𝑒𝑙 =
60, 𝜆𝐺𝐴𝑁 = 0.5, 𝜆𝑜𝑝𝑡_𝑓 𝑙𝑜𝑤 = 0.0004

During inference, the branch of optical flow estimation is re-
moved. Given a video, HPOF first utilizes the iterative regressor to
estimate the initial SMPL parameters Θ1, then Θ1 will be padded to
a sequence of length T and pass through the temporal encoder com-
posed of 1D dilated convolutional blocks. For subsequent frames,
until the sequence is long enough, we will push the new frame at
the end and pop the oldest one at the head.

4 EXPERIMENTS
In this section, we first describe the experimental setup in detail.
Then we conduct ablation experiments and compare our model
with some state-of-the-art approaches.

4.1 Experimental setup
Dataset: To compare with the previous research [24, 25, 29], we
evaluate our model on their widely used benchmarks. For 2D
datasets, there are in-the-wild datasets, including PoseTrack [2],
PennAction [72] annotated with manual 2D joint labels. We unify
their annotation types and filter images with less than six visible
keypoints. Besides, InstaVariety [26] will be exploited to generate
optical flow predictions. For 3D datasets, we employ 3D joint anno-
tations from Human3.6M [20] and ground-truth SPML parameters
from 3DPW [67] for training. Unlike typical 3D datasets that are la-
belled inside a studio, 3DPW has 3D ground truth collected outdoor.
We leave aside part of 3DPW as the validation set.
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Table 1: Ablation experiments with structure selection

Models PA-MPJPE↓ MPJPE↓ PVE↓ Accel↓ Inference Speed↓
HPOF(transformers) 51.9 79.3 94.0 25.3 4.3
HPOF(GRU)-2 layers 50.7 77.1 92.0 23.8 4.0
HPOF(GRU)-3 layers 50.6 77.2 92.3 23.1 6.4
HPOF(tempConv)-w/o-OptFlow 51.3 77.2 93.7 16.5 -
HPOF(tempConv)-w/o-𝐵𝑠 50.2 76.6 91.4 16.5 -
HPOF(tempConv) 49.4 73.9 88.2 16.3 1.9

Data Preprocessing: Each frame is cropped around the person
and scaled to a uniform size 224×224 by an affine transformation.
The affine transformation matrix needs to be preserved to further
rasterize SMPLmesh vertices to the pixel space of original images to
calculate the optical-flow-based loss. Moreover, we perform regular
data augmentation, including random scaling and flipping.

Evaluation Metrics: We evaluate the performance of HPOF
with several error metrics: Procrustes-aligned mean per joint posi-
tion error (PA-MPJPE), mean per joint position error (MPJPE), Per
Vertex Error (PVE), and acceleration error (mm/𝑠2).

Figure 6: Efficiency analysis of acceleration loss. Monitor
the acceleration error of different structures during the test
with or without acceleration loss function

4.2 Ablation Analysis
In this subsection, we conduct ablation studies on 3DPW to analyze
the efficacy of core modules. We fix the backbone of the iterative
regressor as ResNet50 and vary the configurations of other modules.

Our primary concern is about the performance of the temporal
encoder, which will be discussed from the following aspects: (1).
structure selection of temporal encoder; (2). the temporal receptive
field of 𝐵𝑠 ; (3). acceleration loss.

Table 2: Ablation experiments with temporal receptive
fields

Models PA-MPJPE↓ MPJPE↓ PVE↓ Accel↓
HPOF(tempConv)-1 B 52.5 80.5 94.5 15.3
HPOF(tempConv)-2 B 51.5 79.8 93.6 14.2
HPOF(tempConv)-3 B 55.0 82.3 96.6 17.1

To prove the rationality of our proposed temporal module. We
replace it with other structures like Gated Recurrent Units(GRU) or
transformers [66]. We use HPOF(tempConv/GRU/transformer) to
denote HPOF with different temporal encoders. In this experiment,
the transformer encoder consists of a stack of 𝑁 = 2 identical layers.
Each layer has two blocks: a self-attention block with 8 heads and a
position-wise fully connected feed-forward block with 1024 hidden
units. The multi-layer GRU we used has a hidden size of 1024.

Results of evaluation metrics and inference time(ms) per forward
propagation are shown in Tab. 1. It can be seen that HPOF(tempConv)
achieves the best accuracy-speed trade-off. However, experiments
with transformer and multi-layer GRU model bring little effect but
high computational cost. One intuitive explanation for this is that
the task of fine-tuning {𝜃1, 𝜃2, ..., 𝜃𝑇 } is simple enough to give more
consideration to inference speed. On the other hand, We compare
the estimation results from HPOF with and without optical flow
module in Tab. 1. We can see that synthetic optical flows do indeed
improve the performance of HPOF.

The above experiment provides definitive evidence that optical-
flow-based modules can facilitate HPOF for extracting short-term
temporal features. At the same time, receptive field 𝑆 controlled by
the number of blocks in 𝐵𝑝 is the main factor that affects the ability
to capture long-term temporal contexts. We further focus on the
receptive field of 𝐵𝑝 to make a reasonable trade-off between the
capture of short-term and long-term temporal information. We test
on increasing numbers of blocks to find appropriate receptive fields,
which is denoted by HPOF(tempConv)-xB, where 𝑥 ∈ {1, 2, 3} corre-
sponding to the receptive field size 9, 27 and 81. From Tab. 2, we can
observe that HPOF(tempConv)-2B yields the best results. However,
when the receptive field is larger, too much past information will
affect the final performance. Note that the experiment of Tab. 2
does not take the optical flow module into account.

Moreover, we compare the results with and without 𝐵𝑠 in Tab.
1, we can find that the application of 𝐵𝑠 significantly reduces the
error on the joint positions and mesh vertices.

In terms of acceleration loss, we analyze the variation trend
of acceleration loss during testing and intercept some frames to
visualize. As shown in Fig. 6, we can see a generalized decrease
in error when the acceleration loss function is utilized across all
frames, proving that acceleration loss is a simple yet effective way
to regulate our predictions.

4.3 Comparison to state-of-the-art results
Tab. 3 shows the comparisons of our method with state-of-the-arts
on the 3DPW dataset. In particular, HPOF(+) trained on the dataset
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Figure 5: Qualitative comparison between HPOF (𝑤ℎ𝑖𝑡𝑒) and VIBE [28](𝑔𝑟𝑒𝑒𝑛) both in door and outdoor. The models are tested
on NVIDIA GTX1080 GPU, and HPOF is significantly faster than VIBE. As shown in the figure, VIBE performs worse than our
approach in estimating the pose of the extremities. The phenomena of model-image misalignment are obvious.

similar to [24, 28, 59], while HPOF(†) and VIBE(†) also use 3DPW
for training. We evaluate the performance of models with all the
metrics mentioned above. Since both of state-of-the-arts VIBE[28]
and SPIN[29] use the same regressionmodule, we experiment HPOF
with pre-trained HMR from SPIN[29] as its iterative regressor. From
Tab. 3, we observe significant improvements in the MPJPE and PVE
and acceleration metrics. In particular, when compared with VIBE,
HPOF reduces MPJPE and PVE by more than 10 per cent (73.9 vs
82.9) and (88.2 vs 99.1) and achieves 3x processing speed in terms of
temporal module mentioned in the ablation study (1.9ms vs 4.0ms
per image), demonstrating its outperforming efficiency.

Table 3: Quantitative comparison with other methods on
3DPW dataset

Models PA-MPJPE↓ MPJPE↓ PVE↓ Accel↓
Arnab et al. [4] 72.2 - - -
Kolotouros et al. [31] 70.2 - - -
Kolotouros et al. [29] 59.2 96.9 116.4 29.8
Kanazawa et al. [25](+) 72.6 116.5 139.3 15.2
Doersch et al. [11] 74.7 - - -
Sun et al. [59](+) 69.5 - - -
VIBE et al. [28](+) 56.5 93.5 113.4 27.1
HPOF(+) 53.1 84.7 97.5 25.6
VIBE et al. [28](†) 51.9 82.9 99.1 23.4
HPOF(†) 49.4 73.9 88.2 16.3

Furthermore, we conduct a visualization experiment to compare
the results of HPOF and VIBE. As is shown in Fig. 5, VIBE fails to
track the details of limbs, such as the hands and feet. The leading
cause for this phenomenon is that VIBE only utilizes a motion
discriminator to tell realistic motion from an overall perspective.
Sometimes, to keep the rationality of actions, VIBE tends to be more
conservative with significant range movement and ignore some
details. While for HPOF, we use a large temporal receptive field
to guarantee long-term motion tendency and optical flow loss to
capture short-term saltation information.

5 DISCUSSION
In this paper, we present an end-to-end approach HPOF to realize
3D human reconstruction from monocular video. Considering the
temporal consistency between consecutive frames, HPOF adopts a
temporal encoder to learn the skeleton invariance and pose conti-
nuity across all frames. With a large receptive field, the temporal
encoder can realize long-term motion perception. On the other
hand, HPOF employs the synthetic optical flow as extra 2D cues
of motion trajectories to facilitate HPOF for capturing short-term
temporal information. Our method is fully differentiable and allows
simultaneously training of 3D pose and shape in an end-to-end
manner. We carefully set up the experiments to prove that HPOF
can surpass state-of-the-art methods.

In addition to addressing the problems mentioned above, future
works include: (1). Using physics-based trajectory optimization to
predict the whole body reasonably from a limited visual range; (2).
Realizing real-time inference of HPOF for deploying the model to
3D development platforms like Unity; (3). Learning the pose prior
from different motion styles.
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