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Head generation with diverse identities is an important task in computer vision and computer graphics,

widely used in multimedia applications. However, current full-head generation methods require a large num-

ber of three-dimensional (3D) scans or multi-view images to train the model, resulting in expensive data

acquisition costs. To address this issue, we propose Head3D, a method to generate full 3D heads with limited

multi-view images. Specifically, our approach first extracts facial priors represented by tri-planes learned in

EG3D, a 3D-aware generative model, and then proposes feature distillation to deliver the 3D frontal faces

within complete heads without compromising head integrity. To mitigate the domain gap between the face

and head models, we present a dual-discriminator to guide the frontal and back head generation. Our model

achieves cost-efficient and diverse complete head generation with photo-realistic renderings and high-quality

geometry representations. Extensive experiments demonstrate the effectiveness of our proposed Head3D,

both qualitatively and quantitatively.
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1 INTRODUCTION

Generating high-fidelity three-dimensional (3D) heads poses a significant challenge in the domains
of computer vision and graphics, with a broad range of applications, including 3D games and
movies. However, existing approaches [8, 23, 26, 35, 36, 41, 46, 60, 66, 68, 73, 75] primarily con-
centrate on frontal faces, lacking the capacity of rendering the side or back views. Thus, their
applications are significantly limited. In this work, we aim to address the issue and generate com-
plete 3D heads with photo-realistic rendering capabilities.

Current 3D head generation methods fall into two categories: non-parametric head models and
parametric head models. Non-parametric methods [6, 22, 47, 57, 67, 71] predict 3D heads from
single-view or multi-view images, usually considered as “reconstruction” methods. These meth-
ods face challenges in reproducing heads that do not exist, limiting the variety of generated results.
Moreover, limited-view reconstruction results in insufficient details due to the absence of visible
perspectives. Parametric models [4, 5, 7, 13, 19, 20, 34, 43–45, 56, 61, 69] (Figure 1(a)) utilize decou-
pled parameters to represent heads, which rely on a vast amount of expensive 3D scans and find it
hard to express intricate texture and geometry. Learning 3D head generation solely from images
can be a more cost-effective approach to addressing this challenging task, and it has the potential
to generate richer identities and higher-fidelity outcomes. Recently, 3D-aware GANs [8, 9, 23, 41]
have been learned from easily accessible in-the-wild images to generate 3D frontal faces with
photo-realistic rendering and high-fidelity shapes (Figure 1(b)). These methods theoretically can
also be used in generating heads. However, accurate camera poses are crucial for 3D consistency in
these methods [8], and estimating them without landmarks on the back is challenging. Addition-
ally, image collection in the back views is more difficult. Recently, several powerful works [1, 62]
have achieved the generation of images with broader perspectives and even high-quality com-
plete head generation. These endeavors have involved the collection of a substantial volume of
back-view images and employed pose estimation models to predict camera poses for achieving
such outcomes. However, a significant disparity exists between the actual facial pose and the pre-
dictions made by pose estimation models, which constrains the generation results in terms of 3D
consistency. Hence, our objective is to address the aforementioned challenges and devise an ap-
proach capable of generating 3D-consistent complete heads solely by training on limited images
with accurate poses.

Motivated by the high-fidelity 3D face generator [8], a question arises: can we use it as prior
knowledge to generate full heads? We answer this question with YES, but two challenges must
be addressed. First, how to extract the 3D priors of heads? The face prior is represented implicitly,
making it difficult to integrate the face topology directly with the head in a re-topological manner
akin to computer graphics. A straightforward idea is to directly fine-tune the 3D-aware genera-
tion model on full head data. However, fine-tuning the pre-trained model with limited data, e.g.,
several thousand images, often leads to mode collapse or over-fitting [17], resulting in limited
face diversity and low quality. Second, how to bridge the domain gap between the frontal faces and

hair? Obviously, the frontal face and back of the heads with head share two related but different
distributions, respectively. Moreover, obtaining back-view images with accurate view direction is
challenging, resulting in highly imbalanced quantities in these two distributions. This poses an ex-
tra requirement for the discriminator in the 3D-aware Generative Adversarial Network (GAN)

model to not only distinguish real/fake samples but also frontal/back views.
In this work, we propose Head3D for the diverse full head generation that builds on a current

state-of-the-art (SOTA) 3D face generative model, i.e., EG3D [8]. Our goal is to transfer the
facial prior generated by EG3D onto full heads with limited 3D data. To extract the 3D prior, we
conduct a systematic analysis of the tri-plane representation and observe a decoupling between the
geometric and identity information in this representation. Based on this observation, we propose
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Fig. 1. Illustration of existing head/face generation methods and our presented Head3D. All results are ren-

dered into RGB images and geometric form in both frontal and side views.

a tri-plane feature distillation framework that aims to preserve the identity information while
completing the head geometry. To address the second problem, we design dual-discriminators for
frontal faces and the back of heads, which not only frees the discriminator from distinguishing
frontal/back images but also inherits the strong capability of discriminators from EG3D.

To evaluate the effectiveness of our Head3D, we conduct comparative analyses with the original
EG3D [8] and other recent baselines. Our experiments demonstrate that the proposed Head3D
model can produce superior results compared with previous approaches despite being trained
with only a small amount of multi-view images and prior knowledge. Examples of our model are
shown in Figure 1(c). Additionally, we perform ablation studies to validate the effectiveness of each
component in Head3D.

The main contributions are summarized as follows: (a) We propose the novel Head3D method
for generating full heads with rich identity information, photo-realistic renderings, and detailed
shapes with limited 3D data. (b) We investigate the effectiveness of tri-plane features and propose
tri-plane feature distillation to enable the transfer of identity information onto the head templates.
(c) We propose a dual-discriminator approach to address the distribution gap and quantity imbal-
ance between front-view and back-view images, thereby ensuring the quality of generated heads.

2 RELATED WORK

2.1 Head Generation Model

As previously discussed in the introduction, head generation can be categorized into two types.
“Reconstruction” methods [6, 22, 47, 57] primarily learn the correspondence between 3D data and
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images to establish prior knowledge. When presented with new images, these methods optimize
the difference between the reconstructed results and the images for reconstruction. However, these
methods are limited to the reconstruction of heads present in the given images and are incapable of
generating novel heads. Explicit parametric 3D morphable models [3–5, 7, 13, 19, 34, 43–46, 56] rep-
resent identities, textures and expressions by low-dimensional PCA parameters, which are learned
from 3D scans with different expressions and identities. Similarly, implicit 3D parametric mod-
els [20, 27, 69] typically employ an auto-decoder to learn the decoupled parameters from 3D scans.
However, these methods are trained with a large number of expensive 3D scans and find it hard to
express detailed texture and geometry. The recent Rodin model [59] employs a diffusion model to
learn head generation trained by images. However, this approach requires a large dataset consist-
ing of 100,000 3D models for rendering multi-view images, and each identity is reconstructed with
a tri-plane alone for training the diffusion model. The employed dataset and training procedure
are particularly expensive. Similarly, Panohead [1] collects a large amount of data for complete
head training. However, the inaccurately estimated camera pose limits the 3D consistency of the
model. In contrast to these expensive methods, our goal is to generate diverse novel and high-
fidelity heads in a cost-effective manner, utilizing only implicit face priors and a limited amount
of multi-view images.

2.2 NeRF-Based GAN Model

A neural radiance field (NeRF) [39] represents 3D models by implicit networks whose out-
puts are density and color under the input of position and view direction, optimized by view
reconstruction between volume rendering results and ground truths. Recent methods integrat-
ing NeRFs and GANs [21] aim at learning 3D-aware generators from a set of unconstrained im-
ages [9, 18, 38, 40, 49, 53, 54]. GRAF [49] verifies that NeRF-based GANs can generate 3D-consistent
model with high-fidelity rendering results. Pi-GAN [9] introduces SIREN [52] and a growing strat-
egy for higher-quality image synthesis results. To improve rendering efficiency, several works
volumetrically render a low-resolution feature, then up-sample them for high-resolution view syn-
thesis under different 3D consistency constraints [8, 23, 41, 66, 68, 73, 75]. In particular, EG3D [8]
provides a hybrid 3D representation method, which first generates tri-plane features, then sam-
pled features are decoded and rendered for image synthesis. Pose-related discrimination is utilized
for 3D consistency generation. Surrounding head images are a prerequisite for these methods to
achieve complete head generation. However, it is difficult to predict the view directions of in-the-
wild back head images, and pose-accurate multi-view images are expensive. Our Head3D extends
EG3D to achieve complete head generation with limited multi-view head images by facial priors
transfer via tri-plane feature distillation.

2.3 Knowledge Distillation of GANs

The target of knowledge distillation (KD) [25] is to transfer dark knowledge, for exam-
ple, logits and features, from teacher networks to student networks, which is originally used
in classification [12, 42, 48, 55, 65, 74]. KD is also employed for GAN-based model compres-
sion [11, 28, 33, 37, 58, 64]. In GAN compression [33], the student network learns every interme-
diate feature and final output from the teacher network. Besides conditional GANs, several works
focus on the study of unconditional GANs. The content-aware GAN [37] adopts multi-level distil-
lation and content-aware distillation, then fine-tuned by adversarial loss. StyleKD [64] proposes
that the mapping network plays an important role in generation. In addition, a novel initializa-
tion strategy and a latent direction-based distillation loss are presented for semantic consistency
between the teacher and student model. Our work is built upon a StyleGAN-like 3D-aware gener-
ative model EG3D [8]. Through experiments, we observe the disentanglement of tri-planes, which
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are critical in semantic representations in EG3D. Accordingly, a tri-plane feature distillation pro-
cedure is proposed to transfer facial priors in complete head generation.

3 METHODS

With a small number of multi-view head images, our goal is to achieve complete head generation
with a pre-trained face generator. We first review an efficient and effective tri-plane-based face
generator EG3D (Section 3.1). Second, aiming to extract the semantic information of the face as
prior knowledge, we explore how tri-planes represent the faces (Section 3.2). Third, we describe
how to apply the prior knowledge to generate full heads (Section 3.3). Finally, the training process
is introduced in detail (Section 3.4).

3.1 Revisit Tri-planes for 3D Generation

EG3D is a tri-plane-based generative model. Similar to StyleGAN [30, 31], mapping networks M
process the input latent code z and camera parameter p to style code w :

w = M(z,p). (1)

Then, feature maps F are extracted via a CNN-based generatorC , yielding three planes that are
rearranged orthogonally to form a tri-plane structure:

Fxy , Fxz , Fyz = C(w), (2)

where Fxy , Fxz , and Fyz are three planes in the front, side, and top views, respectively. The tri-plane
features contain semantic information about faces, determining their identities.

Next, features of locations are sampled from tri-planes and are fed into the decoder to output
densities σ and colors c . Then, volume rendering is performed to obtain moderate-resolution im-
ages Ir aw .

Ir aw =

∫ ∞

0
p(t)c(r (t),d)dt , (3)

where p(t) = exp(−
∫ t

0
σ (r (s))ds) · σ (r (t)), r (t) represents camera ray, and t is the distance from

the camera.
Finally, a super-resolution module S(·) is performed to up-sample the Ir aw to results I of high

resolution:
I = S(Ir aw ). (4)

3.2 Disentangled Representation of Tri-planes

Insufficient multi-view head images pose a challenge for generating diverse complete heads. How-
ever, leveraging the existing EG3D model, which can generate high-quality 3D frontal faces, offers
a potential solution. Similar to StyleGAN, the semantic results in EG3D are determined by the style
codesw , which generate tri-plane features as the only output of the CNN generatorC . As a result,
all of the semantic information is contained within tri-planes. To enable knowledge transfer, we
conduct an in-depth analysis of tri-planes to explore how prior knowledge is represented.

To investigate the role of each plane in the original EG3D, we exchange each plane (Fxy , Fxz ,
and Fyz ) between two different samples, and then generate faces from the newly integrated tri-
planes for visual analysis. The results are shown in Figure 2. We observe that the identities are
exchanged along with Fxy changed, while the identities remain the same after exchanging Fyz and
Fxz . Additionally, we conduct numerical experiments on 100 different identities. We exchange Fxy ,
Fxz , and Fyz for each identified pair, respectively, and render the tri-planes to images from the
frontal view. The identity consistency between the exchanged tri-plane and the original identities
is then measured by Arcface [14], and the results are calculated by averaging all the sample pairs.
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Fig. 2. Visualization analysis of exchanging each plane of the tri-plane. ID 1 and ID 2 are generated from the

different latent codes, represented in blue and green, respectively.

Table 1. Quantitative Results with Tri-plane Exchanged

Fxy Fxz Fyz ID 1 ID 2

ID 2 ID 1 ID 1 0.535 0.968

ID 1 ID 2 ID 1 0.977 0.534

ID 1 ID 1 ID 2 0.988 0.532

ID 1 ID 1 ID 1 1.000 0.531

ID 2 ID 2 ID 2 0.531 1.000

ID 1 and ID 2 denote two different identities generated from different

z by EG3D. We report the average results between every pair

between 100 identities.

Table 1 indicates that the identities are preserved when Fyz and Fxz changed, whereas they ex-
change when Fxy are exchanged. Based on these observations, we preliminarily assume that Fxy

plays a crucial role in determining the identity information.
We performed three in-depth experiments to further validate our assumption. First, as an illus-

tration, we conducted an experiment involving the exchange of xy-planes associated with the eye
position. Results shown in Figure 3 illustrate 3D-consistent alteration in the appearance of the eyes
while preserving consistency in other facial regions. This experiment provides empirical evidence
supporting the notion that the xy-plane can effectively encapsulate and represent facial semantic
information in an independent manner. Second, we explored the role of channels in the xy-plane
as shown in Figure 4. We quantitatively measured the distribution of different channels in two im-
ages and then arranged these channels in order of dissimilarity. As shown in Figure 4, by swapping
the halves with the most significant differences, we observed that the top 16 channels provided
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Fig. 3. Exchanging partial xy-planes enables 3D-consistent local face editing.

Fig. 4. The results of exchanging different channels. Each individual channel seems to govern nuanced as-

pects of the same semantic information.

more detailed information, whereas the latter still contributed some limited details (teeth texture).
This suggests that identity information cannot be fully preserved using only a limited set of chan-
nels, emphasizing the importance of complete xy-plane representing face priors. Finally, to verify
the impact of Fxz and Fyz , we fine-tune a head generator from EG3D and perform experiments in
which Fxy is exchanged between the face generator and head generator. The instanced results, as
shown in Figure 5, indicate that exchanging Fxy leads to identity transfer while not influencing the
geometry whether it be heads or faces. Our findings support the notion that Fxy primarily controls
the identity information, while the other two planes, Fyz and Fxz , mainly represent the geometric
shape of the head. These results prove our proposed decoupling between identity and geometric
information in the tri-plane representation.

This observation is consistent with our expectation, as the xy-plane is aligned with the training
images to better capture the facial features, whereas the other two planes are orthogonal to the
frontal view, which mainly represents the depth and geometric information. The experimental
results and analysis shed some light on the effect of tri-plane features in EG3D and offer a starting
point for considering how to employ this prior to complete head generation.

3.3 Tri-plane Distillation for 3D Head Generation

One potential approach to generating complete heads with the frontal face priors is to directly fine-
tune the face generator with a few multi-view data. However, training with a small number of data
can cause mode collapse or over-fitting, resulting in limited diversity and low quality. Inspired by
computer graphic methods in which the face is extracted from a photo and then registered with
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Fig. 5. Visualization analysis of exchanging xy-plane between face generator and head generator. Planes in

green and blue represent them from the face model and head model, respectively.

Fig. 6. Overview of our proposed Head3D. First, the frozen pre-trained EG3D serves as the teacher network

Gt , whereas the fine-tuned head generator is the student networkGs . Then, tri-plane feature distillation and

multi-level loss functions are employed for photo-realistic and diverse full-head generators. Note that, the

parameter p for rendering and discriminator are not displayed in this framework.

the head template model, we can also apply the tri-plane-based face priors to an implicit head
template. Additionally, knowledge distillation [25] is a general method to transfer dark knowledge
between models, allowing for the delivery of facial priors. Therefore, we propose a tri-plane feature
distillation method, as illustrated in Figure 6. First, we fine-tune a full head generator from the pre-
trained EG3D using a small amount of multi-view head images. Then, served as prior knowledge,
Fxy are transferred from the face generator to the head network via knowledge distillation to
ensure consistency in identity. Benefiting from the powerful presentation capability of tri-planes,
we are able to integrate the head template and face priors, enabling diverse full head generation.
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In order to achieve photo-realistic rendering results, GAN loss is necessary for training the tri-
plane distillation framework [64]. The importance of camera poses in learning correct 3D priors
in the discriminator has been highlighted in EG3D [8]. For human heads, camera poses can be
categorized into front and back perspectives to guide the generation of the face and back, respec-
tively. A large number of single-view face datasets are available to provide front images, whereas
the number of back images is limited to half of the small multi-view dataset. As a result, there is an
imbalance in the quantity and a distribution gap in perception between frontal and back head im-
ages. It is hard for a single discriminator to simultaneously guide fine-grained face generation and
guarantee full head geometry in two different domains. To tackle this problem, we propose a dual-
discriminator to ensure the generation quality and maintain the head completed. In our method,
two discriminators guide the generation of front and back images. Moreover, two discriminators
are alternated during training to mitigate the effects of imbalanced data.

3.4 Model Training

Face Prior Transfer. As depicted in Figure 6, we present Head3D, a tri-plane distillation approach
for generating diverse heads. First, a head generator Gs is fine-tuned from a pre-trained face gen-
erator Gt with scarce multi-view head images. Then, to ensure identity consistency, the transfor-
mation of Fxy is calculated by L2-norm, represented as

Lkd = | |F t
xy − F s

xy | |2, (5)

where F t
xy and F s

xy are xy-plane features generated by head generator Gt and face generator Gs ,
respectively.
Dealing with Distribution Gap. To realize high-fidelity front and back head generation, we em-
ploy two discriminators, Df ront and Dback , for training that share the same network structure as
the discriminator in EG3D. The purpose of Df ront is to ensure the quality of faces, and it is ini-
tialized by the pre-trained face EG3D. Dback is used to ensure the integrity of the head, which is
initialized by the fine-tuned head generator. Fed together with camera parameters p, both discrimi-
nators support the synthesis results I to be 3D consistent and in a similar distribution with ground
truth images Iдt . The GAN loss function can be represented as

Lдan = E[f (D(p, I)) + f
(
−D

(
p, Iдt

) )
]

+ γ | |∇D
(
p, Iдt

)
| |

2
,

(6)

where f (x) = −log(1 + exp(−x)) and γ is a hyper-parameter in R1 regularization. Dual-
discriminators are trained separately according to the view from the face or back of heads, whose

loss functions are represented as L
f ront
дan and Lback

дan , respectively. In addition, the regularization
coefficient γ of the dual-discriminator is different due to the imbalanced quantity of the dataset.
Detailed Texture Learning. StyleKD [64] proposes that the mapping network determines the
semantic information of generators. Therefore, besides tri-plane feature distillation, it is also nec-
essary to ensure that the output w of the mapping network is consistent. Following StyleKD [64],
a mapping loss is utilized:

Lmap = | |W t −W s | |1. (7)

Moreover, in order to learn more detailed faces, RGB loss and LPIPS loss [72] are applied only
to frontal neural renderings Ir aw and super-resolution results I . Referring to the quality of the
generated results of original EG3D declines in the side view, this loss function is applied only to

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 176. Publication date: March 2024.



176:10 Y. Cheng et al.

the rendering results within a certain range.

Lrдb = I(|Δp | ≤ τ )[| |I t − I s | |1 + | |I t
r aw − I s

r aw | |1], (8)

Llpips = I(|Δp | ≤ τ )| |F (I t ) − F (I s )| |1, (9)

where F (·) is a well-trained frozen VGG [51] to extract multi-scale semantic information from
images. Δp is the horizontal offset angle from center and τ is a threshold. These two loss functions
work in image space and perceptual space, respectively, ensuring detailed consistency between
the teacher and student.

Finally, the final loss function is a weighted sum with the above loss functions:

L =λдanf r ont
L

f ront
дan + λkdLkd + λrдbLrдb

+ λlpipsLlpips + λmapLmap + λдanback
Lback

дan ,
(10)

where λ∗ denotes the weights of each loss functions.

4 EXPERIMENTS

4.1 Experiments Setup

Dataset. We train our proposed Head3D using two datasets. One is FFHQ [30], a large public single-
view real-world face dataset, for face priors learning. The other is H3DH, our proposed multi-view
human head dataset. H3DH contains multi-view images of 50 identities, who are gender- and age-
balanced with a wide variety of hairstyles. Following EG3D, we employ the same off-the-shelf
pose estimators [15] to extract approximating camera extrinsics of FFHQ. In terms of H3DH, we
set the same camera intrinsic as that of FFHQ and obtain images with the resolution of 5122 from
surrounding perspectives under natural light.
Implementation Details. We fine-tune the head generator in the procedure from StyleGAN-ADA
[29] via the H3DH dataset with batch size 16. The optimizer is Adam [32] with the same learning
rate as original EG3D [8] of 0.0025 for G and 0.002 for D. D is trained with R1 regularization with
γ = 20. In the knowledge distillation phase, the learning rate is converted to 0.001 for G and 0.0005
for D, with γ = 1 for Df ront and γ = 20 for Dback . All λ∗ are set to 1.0 except λkd , which is set
to 0.5 and λдanback

, which is set to 10.0 to balance loss functions in the front view and back view.
Threshold τ is set to π/3. The resolutions of neural rendering Ir aw and final generated images I are
1282 and 5122, respectively. Note that, owing to H3DH rendered without background, we regard
fine-tuned EG3D which generates faces in the white background as the teacher network instead
of the original EG3D, which is fine-tuned with images in FFHQ whose background is removed by
BiseNet [70]. Training a model costs about 4 hours on two NVIDIA A100 GPUs.

4.2 Comparisons

Comparisons with baselines. As few works achieve full head generation trained by images, we
compare our work with some designed baselines. (1) Directly fine-tune EG3D with FFHQ and
H3DH, named DFT. (2) Train model with FFHQ and H3DH from a fine-tuned head generator,
named FH. (3) Original pre-trained EG3D, to examine the quality of faces. The results are shown
both qualitatively and quantitatively, where we use Fréchet Inception Distance (FID) [24] and
Kernel Inception Distance (KID) [2] for evaluation. Note that we do not implement training
from scratch on the H3DH due to the fact that training with only 50 individuals results in insuffi-
cient diversity in the identity information.

Figure 7 provides example results synthesized by our proposed method from various viewpoints
and identities, demonstrating the generation of complete head geometry and high-quality ren-
derings. In particular, our method is able to generate accessory items such as hats and glasses,
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Fig. 7. Example results of our proposed Head3D, synthesized from three different views.

Fig. 8. Qualitative comparisons between Head3D and baselines, which exhibit two perspectives of two iden-

tities. The red rectangles highlight artifacts showing on the faces. Please zoom-in.

Table 2. Quantitative Comparisons Between Our

Head3D and Baselines in FID and KID×100,

Obtained in the Resolution of 5122

Type Baselines FID ↓ KID ↓

Face EG3D (Fine-tuned) 6.82 0.36

Head
DFT 30.46 1.50
FH 46.09 2.11

Ours 11.34 0.61

which are not present in the H3DH dataset. The visualized comparisons are shown in Figure 8,
in which images in the same column are synthesized from the same latent code z. Although DFT

and FH achieve full head generation, output consistency with origin EG3D is broken. Moreover,
the model is trained by naïvely combined FFHQ and H3DH, resulting in low-quality results and
model collapse. Similar observations can also be found from Table 2 that both FID and KID be-
come much worse in DFT and FH. Original EG3D performs the best numerically, while it cannot
generate full heads. Our work achieves identity representation consistent with the original EG3D
through knowledge distillation and can fully represent human heads with good 3D consistency.
Although our method is numerically inferior to the original EG3D, considering information loss
in knowledge distillation and no back images corresponding to FFHQ faces, the decline in generat-
ing quality is acceptable. Specifically, the generated heads maintain high-fidelity rendering results
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Fig. 9. Qualitative comparisons among our Head3D and current generative head models. Results of

LYHM [45, 46], DECA [16], and i3DMM [69] are obtained via their papers and released codes.

as EG3D qualitatively. In summary, our H3DH achieves high-quality complete head generation in
both visual results and quantitative evaluation.
Comparisons with current methods. Qualitative comparisons are conducted among our
Head3D and current generative head models, LYHM [45, 46], DECA [16], and i3DMM [69], in terms
of rendering results and geometry shapes, as depicted in Figure 9. Notably, these models are trained
on the dataset consisting of a large number of 3D scans (several hundred or thousands), whereas
our Head3D model only uses a multi-view image dataset containing 50 individuals. However, the
results reveal that our model produces superior rendering quality and more detailed geometry than
these methods. Additionally, explicit head models [16, 45, 46] are not capable of representing hair,
whereas the implicit model i3DMM [69] can only represent hair in low quality. In contrast, our
results show the ability to generate photo-realistic and diverse hair, including various accessories
such as hats and glasses. Therefore, this comparison demonstrates that our algorithm can achieve
high-quality and highly detailed complete head generation with significantly less data.
Comparisons with PanoHead. PanoHead [1] is a powerful and effective approach that intro-
duces novel components such as the Tri-Grid and Self-Adaptive Camera Alignment, which exhibit
remarkable capability in generating 3D full heads. It should be noted that the training data con-
taining a large number of in-house images on back views greatly contributes to the performance.
However, this study aims to investigate the potential of achieving complete head generation using
a limited dataset. In this section, we train our proposed Head3D model along with PanoHead using
the H3DH and FFHQ datasets, allowing for fair comparisons with limited data.

The comparative analysis presented in Figure 10 demonstrates the performance of both models
qualitatively. It is evident that both models successfully accomplish the task of generating complete
heads. However, with limited training data, Panohead encounters artifacts, such as striping, on
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Fig. 10. Qualitative comparisons between our Head3D and recent SOTA PanoHead [1].

Fig. 11. Geometric comparisons between our Head3D and recent SOTA PanoHead [1].

Table 3. Quantitative Comparisons Between Our Head3D and Recent SOTA Method PanoHead

Methods Views FID ↓ KID ↓ Training Time (h) 3D Consistency PSNR

PanoHead [1]
front 37.85 2.46

≥48 23.61(*22.75)
back 85.32 9.21

Ours
front 11.34 0.61

≈4 24.91
back 74.49 5.26

The two models are both trained by our limited dataset. *means results from the released Panohead

pre-trained model.

the facial region in frontal views. Figure 11 shows that our Head3D model is also able to generate
complete heads in geometry. In all, Head3D exhibits better face quality due to its utilization of
pre-trained EG3D to incorporate face priors.

We also conduct quantitative comparisons of model generation quality, training time, and 3D
consistency, as shown in Table 3. Specifically, for generation quality, following EG3D [8], we gen-
erate 50,000 images for |yaw|<=90º and |yaw|>=90º, respectively, and calculate FID and KID scores
in conjunction with corresponding training dataset samples. The results indicate that our Head3D
outperforms Panohead [1] in terms of the quality of frontal- and back-view image generation. This
may be attributed to the substantial disparity in the number of frontal-view images compared with
back-view ones and the limitation of a single discriminator that restricts further enhancement in
frontal facial quality. For the back-view images, it is plausible that the utilization of a single dis-
criminator also led to some quality degradation, possibly aggravated by the occurrence of rare
back-view samples. Additionally, Head3D showcases enhanced training efficiency owing to the
integration of face priors.

To evaluate the 3D consistency, we adopt the PSNR metric proposed in GRAM-HD [63]. We
randomly generate 100 images from various surrounding viewpoints for 50 individuals, with
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Fig. 12. Illustration of ablation studies on tri-plane feature distillation and dual-discriminator.

50 images used to train TensoRF [10]. We then render 50 images from distinct views of the re-
maining 50 images and calculate their PSNR values to demonstrate 3D consistency. Benefitting
from the robust 3D consistency offered by TensoRF, this metric can effectively assess the 3D con-
sistency of the complete human head generation model. Results are shown in Table 3, in which *
means original Panohead [1], which is trained on a significantly larger dataset. It is important to
highlight that, considering the presence of backgrounds in the original Panohead, we ensure fair-
ness in the evaluation by cropping the individuals and employing a uniform white background as
seen in Head3D. The findings are interesting. First, they indicate that Head3D exhibits superior 3D
consistency compared with the limited dataset-trained Panohead. Second, the differences observed
between the original Panohead and our Panohead trained on a limited dataset, as well as Head3D,
can be attributed to several factors: (1) The tri-grid representation, as opposed to the triplane, may
mitigate mirroring-face artifacts to some extent. However, different planes may affect results from
various viewpoints, thus limiting 3D consistency: Good 3D consistency necessitates uniform

representation from any viewpoint. (2) Our H3DH dataset is rendered from 3D models with
highly accurate pose information, whereas the original Panohead employs less precise pose estima-
tion models and relies on a self-adaptive camera alignment method, leading to a reduction in 3D
consistency: Accurate pose information indeed contributes to improved 3D consistency.
Consequently, Head3D achieves high-quality 3D-consistent head generation even when working
with limited amounts of data.

4.3 Ablation Study

Effectiveness of Tri-plane Feature Distillation. We investigate the effectiveness of our pro-
posed tri-plane feature distillation method. We considered two settings: (a) directly applying f t

xy

on the head generator without training and (b) distilling the whole tri-plane features. Results are
shown in Figures 12(a) and 12(b), respectively. It can be concluded in the first setting that, al-
though the identity information is preserved, the generated heads suffer from severe distortions
and defective head shapes. In the second setting, distilling the whole tri-plane leads to incomplete
head shapes. In contrast, our proposed method, as shown in Figure 3(d), maintains identity consis-
tency and achieves complete head generation. These results demonstrate the effectiveness of our
tri-plane feature distillation approach.
Effectiveness of Dual-Discriminator. We also conduct experiments to verify the effectiveness
of our proposed dual-discriminator. As depicted in Figure 12(c), the model trained with a single
discriminator proposed in the original EG3D for head generation produces competitive results
for face synthesis with Head3D. However, it fails to generate the back of the head, resulting in
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Table 4. Quantitative Results of Ablation Study

on Different Loss Functions, Evaluated by FID,

KID×100, and ID Consistency (ID)

FID ↓ KID ↓ ID ↑

W/O Lkd 44.76 3.07 0.10
W/O Lдanf r ont

29.84 2.47 0.45

W/O Lrдb &Llpips 19.50 1.29 0.45
Ours 11.34 0.61 0.65

Fig. 13. The ablation studies on the effectiveness of each loss function. All images in a column are generated

from the same latent code. Note that the ground-truth results are generated by the pre-trained face generator

without background.

a stitching of two faces. In summary, the comparison verifies the effectiveness of the proposed
dual-discriminator.
Effectiveness of Loss Functions. We conducted an ablation study to verify the effectiveness of
each loss. We remove each loss function individually and maintain other settings with no change.
The results are evaluated both qualitatively and quantitatively. The quantitative results—including
FID, KID, and Identity Distance (ID) to the origin EG3D, calculated by Arcface [14] among 10,000
individuals—are presented in Table 4. The results show that removing any loss functions results
in a significant increase in FID and KID scores. Moreover, the lowest ID score is obtained when
knowledge distillation is removed, which highlights the crucial role of tri-plane distillation in trans-
ferring identity information.

Figure 13 presents example results of different settings to further evaluate the effectiveness
of each loss function. Although most of the textures are preserved without Lдanf r ont

, the photo-
realism is lost, which indicates the importance of adversarial training for maintaining image
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Fig. 14. Interpolation results of our proposed Head3D model. The results are generated with the average of

latent codes from source A and source B.

Fig. 15. Smoothly interpolating results of our proposed Head3D model.

quality. While lacking Lkd causes failure in identity transmission, Lrдb and Llpips are also cru-
cial in preserving detailed texture and ensuring texture consistency. Overall, the combination of
these loss functions achieves the best results both quantitatively and qualitatively.
Analysis of Linearity in Latent Space. Analogous to StyleGAN-based generators [30, 31],
style codes w can be linearly interpolated to achieve image manipulations. Figure 14 demon-
strates that our model maintains linear separability in the latent space after knowledge distillation.
Figure 15 demonstrates smoothly interpolating results, illustrating the linearity of the latent space.
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Fig. 16. Latent space editing methods are applicable to our Head3D.

Additionally, maintaining the same latent space with the original EG3D is beneficial in facilitating
seamless integration with other EG3D-based image-editing methods, such as changing expressions
and shapes. Figure 16 shows the head editing results using InterFaceGAN [50] trained on EG3D.

5 CONCLUSION

This article presents Head3D, a method for generating complete heads trained with limited data.
We first revisit the EG3D framework and emphasize the importance of tri-plane as a semantic infor-
mation carrier. Through experiments, we demonstrate that tri-plane decoupling is achievable, with
identity information controlled by the xy-plane. We then propose a tri-plane feature distillation
approach and a dual-discriminator method for training head generators. Extensive experiments
confirm the effectiveness of our proposed method. We hope that our work will inspire further re-
search in generating diverse and high-quality 3D complete heads from limited and uncorrelated
images.
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