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Pose-Guided Person Image Synthesis in the
Non-Iconic Views

Chengming Xu , Yanwei Fu , Chao Wen , Ye Pan, Yu-Gang Jiang , Member, IEEE,

and Xiangyang Xue , Member, IEEE

Abstract— Generating realistic images with the guidance of
reference images and human poses is challenging. Despite the
success of previous works on synthesizing person images in the
iconic views, no efforts are made towards the task of pose-
guided image synthesis in the non-iconic views. Particularly,
we find that previous models cannot handle such a complex task,
where the person images are captured in the non-iconic views by
commercially-available digital cameras. To this end, we propose a
new framework – Multi-branch Refinement Network (MR-Net),
which utilizes several visual cues, including target person poses,
foreground person body and scene images parsed. Furthermore,
a novel Region of Interest (RoI) perceptual loss is proposed to
optimize the MR-Net. Extensive experiments on two non-iconic
datasets, Penn Action and BBC-Pose, as well as an iconic dataset
– Market-1501, show the efficacy of the proposed model that
can tackle the problem of pose-guided person image generation
from the non-iconic views. The data, models, and codes are
downloadable from https://github.com/loadder/MR-Net.

Index Terms— Image processing, image generation.

I. INTRODUCTION

SYNTHESIZING images with bespoke human poses has
recently attracted pervasive research attention in computer

vision, multimedia, and graphics communities [5], [23], [24],
[31], [33]. Broadly speaking, pose-guided person image syn-
thesis can be applied in many scenarios, including virtual
environment rendering, photography editing, character ani-
mation, physics-based simulation, and motion control, etc.
Furthermore, the forged person images can also be uti-
lized in the applications of video generation [10] and video
completion [5].

Recently, extensive works have been conducted in synthe-
sizing iconic person images. Here we inherit the definition
of “iconic” in [19]. Particularly, as shown in Fig. 1 (a), the
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Fig. 1. (a) iconic person images: person instances with walking/standing
poses near the center of a neatly composed photo in a simple scene. (b) non-
iconic person images: person instances with arbitrary poses in a clutter scene.

person images of Market-1501 dataset are in the iconic views:
high-quality person instances in the center of images, but
lacking important contextual information and non-canonical
viewpoints. Previous works [5], [23], [24], [31], [33] perform
fairly well on such iconic person image datasets, e.g., Market-
1501 and Deep Fashion [21]. These datasets, in general, are in
very simple scenes, mostly street views which are not required
to predict, or backgrounds with single color. Moreover, persons
are either standing or walking and not occluded by objects.
However, extending previous models to non-iconic person
images would lead to unstable training and generated results
with low quality, as shown in Fig. 2.

Rather than only synthesizing iconic person images,
we tackle the novel task of synthesizing person images of
target poses in the non-iconic view, as defined in Fig. 2. In
such a novel task, the model needs to synthesize both realistic
human body and consistent background. Nevertheless, the
interaction between objects and persons in non-iconic person
images intrinsically makes the image synthesis much more
complex than iconic person images. Furthermore, our novel
task is even challenged by the casual nature of unprocessed
photos. Such photos capture the human body with varying
poses at any position in the daily life and work of everyone,
and thus typically featured with poor lighting, low resolution,
occlusion, camera shake, varying human actions/poses, and
cluttered scenes of background noise. Critically the underlying
challenges existed in the pose-guided human synthesis from
the non-iconic view, can be broadly characterized as below,

(1) Cluttered scene. The images of iconic person datasets
are captured in the simple scenes, e.g., a specified street view.
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Fig. 2. Overview of the task. Given a reference image where the person instance is in the non-iconic view, our task aims at synthesizing person images with
the pose from target images. Our results are better than those synthesized images by DVG, PN-GAN and PG2.

Fig. 3. Inconsistent background by naive methods. We use the ground-
truth bounding box given in Penn Action. The naive methods (even further
processed by previous methods) produce inconsistent background. More
ablation study in Sec. IV-D.

This greatly and unrealistically simplifies the synthesis task,
since image generator does not need to explicitly model the
image scene. However, this is not the case of actual daily
scenes, where a non-iconic image can be captured at cluttered
scene. For example, Figure 1 (b) shows the person in the non-
iconic view may be in the cluttered scenes with varying pose
scales and pose shape.

(2) Arbitrary person poses. There are plenty of standing
or walking postures in the ‘iconic’ Market-1501 and Deep
Fashion dataset, as illustrated in Fig. 1 (a). Most of the
previous works could produce remarkable good results on
these iconic views, while they may be failed in the novel
task of image synthesis from non-iconic views, as illustrated
in Fig. 2. Intrinsically, the key challenge comes from the fact
that the task of non-iconic view synthesis has to handle the
generation of person images from arbitrary human poses, e.g.,
the bent (Fig. 2) or distorted (Fig. 1 (b)) poses.

(3) Inconsistent background. One may ask whether our
task can be addressed by any naive solutions, such as, crop-
ping, inpainting and pasting image patches of persons. For
example, one simple solution is to firstly crop the person
regions in reference and target images respectively, which are
pasted into reference images with some necessary inpainting
operations. Unfortunately, such a solution could visually gen-
erate inconsistent background, as illustrated in Fig. 3.

To tackle person synthesis in the non-iconic views, we pro-
pose a novel model – Multi-branch Refinement Network
(MR-Net), which makes the use of visual cues such as

human poses, and parsed images inspired from the scenes in
reference images, and poses in target image respectively. These
visual cues are systematically integrated into the proposed
pose-guided multi-branch encoders, with the key insights
of operating separate background and pose-guided human
body foreground to extract different information. Critically,
the background branch grasps the holistic visual cues and
maintains the cluttered scenes in the synthesized images. The
pose-guided branch learns how to rotate and shift the person
instances to the ideal position referring to the target poses.

Formally, our model is composed of the key ingredients
in Fig. 4. We get the foreground person body and background
scene from the reference images with a pre-trained image seg-
mentation model such as Mask-RCNN [11]. The multi-branch
encoders are then utilized in encoding the background image,
target pose, and foreground person image. All the extracted
information is combined through a decoder. Essentially,
the shortcut connection, dilated convolution and non-local
block are employed here to improve the capability of our
model. Moreover, to handle the problem resulted from non-
iconic views and arbitrary poses, we propose a useful loss–RoI
perceptual loss in addition to the common reconstruction
and perceptual losses, which could help efficiently optimize
the MR-Net to better synthesize the non-iconic person
images. Furthermore, by adopting a refinement strategy,
the synthesized images of MR-Net are repeatedly refined to
update the result and make the background more consistent.

Note that the previous Market-1501 and Deep Fashion
datasets only have the person instances in the iconic views.
In contrast, we propose to use two novel non-iconic datasets
– Penn Action [51] and BBC-Pose [7]. As shown in Fig. 1,
the scenes are more complex; and persons have diverse poses.
On these benchmark datasets, we show the efficacy of our
proposed MR-Net.
Contributions. We highlight our contributions as follows. (1)
For the first time, we provide a new and more challeng-
ing perspective of addressing pose-guided human synthesis
in a non-iconic view. (2) To address this challenging task,
we propose a framework – MR-Net. Our network includes
several new components: pose-guided multi-branch encoder,
RoI perceptual loss, and the newly proposed refinement strat-
egy. Particularly, the pose-guided multi-branch encoder is a
network structure introduced here to parse the foreground and
background visual cues; and RoI perceptual loss is a novel
loss function proposed for efficiently training the MR-Net. The
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Fig. 4. Overall framework of our proposed model.

refinement step is a learning strategy introduced to iteratively
update the synthesized image and improve its visual quality.
Extensive experiments and ablation studies show the efficacy
of the proposed MR-Net that, even with more complicated
scenes and diverse person poses, the proposed model can still
perform well in generating person images in the non-iconic
views.

II. RELATED WORK

A. Image Generation

Previous approaches can be categorized into three cat-
egories: (1) Variational Auto-encoder (VAE) [18], [39]: it
provides a probabilistic manner for describing the observation
in the latent space; and then samples from the probability
distribution to generate new samples. (2) Auto-Regressive
Model [27], [28]: it learns an explicit distribution, which
is controlled by a prior knowledge imposed by the model
structures. (3) Generative Adversarial Network (GAN) [2],
[4], [25], [32], [34]: this type of networks utilizes a generator
for image generation, while the networks are optimized as
a min-max game between the generator and discriminator,
and thus can iteratively improve the performance of both
models. Rather than generating images from noise or any
prior distributions, this paper focuses on the task of person
image generation with the input of target poses. Particularly,
the person in the image is in the non-iconic view.

B. Image-to-Image Translation

This is an umbrella term over many related tasks, such
as image style transfer [15], [16], [55], image inpainting
[20], [30], [44] and image super-resolution [8], [46]. With
the input of a reference image and meta information, this
task aims to produce the corresponding images with pre-
defined types. Most of these works are built upon the existing

GANs and auto-encoder models. Especially, as a non-trivial
extension of auto-encoders, the U-net [36] with skip con-
nections, can not only accelerate network training but also
improve the generalization ability of models. Different from
previous image-to-image translation works in transforming the
holistic image styles, our task integrates arbitrary target poses
to help synthesize the images where persons may appear in
the cluttered scenes from the non-iconic views.

C. Loss Functions

For all tasks with the images as output, the objective func-
tions related to image content have the following two forms:
(1) Pixel-level reconstruction loss [22], [45]. This type of loss
models the problems as pixel-wise regression; therefore it may
potentially lose the semantic structure information contained
in images. (2) Perceptual loss. This method treats the images
as the compositions of visual perceptions, including the high-
level features of deep learning models [16], [47], traditional
features like HOG [41] and others. Although this type of
objective functions could keep the conformation of images,
it mostly focuses on the global information, which thus is
not the best choice for our task. Typically, our synthesized
images have both background and human body foreground
with various scales and target poses. To this end, we introduce
a region-of-interest perceptual loss.

D. Pose-Guided Image Synthesis

Recent advances in conditional generative networks enable
the user-guided image synthesis learned from large-scale
datasets. Previous works [5], [23], [31] use the GANs to
simultaneously reconstruct the target images and train the
generator in an adversarial manner. Dong et al. [9] adopt a
warping module, which uses information from learned human
parsing. However, these works mostly target at pose-guided
iconic person image synthesis, where the popular poses are
standing and walking. Ma et al. [24] learn a disentangled
representation of images by training different auto-encoders
for poses, human foreground, and background, and they further
use the trained decoders to sample pose conditioned images.
In their work, the background encoder is trained only for
reconstruction, where the target position of the human body is
the same as that in the input image. Therefore it might easily
fail on non-iconic images. In contrast, our model does not only
explicitly learn the representations of scene and background,
but also employs a novel loss function in better learning the
representation. Balakrishnan et al. [3] consider segmenting
background and foreground to improve the image quality.
However, it is still about person synthesis in the iconic view.
Moreover, some methods, e.g., DeformGAN [37], require
the input of an affine matrix between any two body joints.
Unfortunately, some joints are missed from the source body in
many datasets, e.g., Penn Action. Thus it is difficult to make
a good estimation of transformation, and it also negatively
affects the synthesis. Compared with that, our model does not
have such restrictions. In addition to solving the non-iconic
task, our model also has to deal with the visual difference
between human poses and human bodies in the images; thus,
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quite different from previous methods, we introduce the multi-
branch structure which gradually transfers the source body
with pose information.

The human shape guided transformation is also discussed
in other related topics. For example in the task of person
re-identification, Qian et al. [33] follow PG2 to directly
augment the gallery data by generating pose-guided images.
Miao et al. [26] consider disentangled features for each joint
which are then aggregated to enhance the global feature for
human images. [40], [54] explore part-based person feature
for re-identification. Zheng et al. [52] entitle model to more
generalize ability with pose-invariant features. Moreover, such
a technique is also important to the application of clothes
try-on [13], [14].

III. METHODOLOGY

Our goal is to synthesize a new human image in a complex
background with a specified pose. In particular, given a refer-
ence image Ir which provides the person image in a complex
background with target image and target pose image denoted
as It and It p respectively where It p comes from the target
image It

1, we can synthesize a new image Îs . Note that all
the images have the same size, i.e., It , It p, Îs , Ir ∈ R

w×h×3.
Essentially, we require that Îs should (1) still has the same
person identity and complex background as Ir while keeping
the correct pose as It p , and (2) be genuine enough to be
considered as a natural image.

Overview. We propose a novel architecture —Multi-branch
Refinement Network (MR-Net) which treats these several
elements separately. We overview the architecture in Fig. 4.
Given a reference image Ir , we first segment the human body
out by pre-trained Mask-RCNN to produce the person body
image Ih , background image Ibkg , and corresponding mask
M. And M is the binary mask: its 0 value indicates the
background; 1, foreground. Note that segmentation module is
not a module of our MR-Net, nor a contribution in this paper.
Then, we input the target pose It p and Ih into pose-guided
encoder E with two pathways, i.e., target pose encoder Ep

and foreground encoder E f g , and input the Ibkg and M into
the background encoder Ebkg , whose output is then passed
through decoder D via skip connections. Finally, after several
convolutions and up samplings, the decoder D outputs the
target image Ît .

A. Pose-Guided Multi-Branch Encoders

We propose to use the multi-branch encoder structure in
parsing and encoding the information of the foreground person
body, and background scene differently. Particularly, the per-
son instances should be dramatically changed guided by the
target poses, while the required update on the background
scene is relatively subtle. Therefore, our key lies in separating
the tasks into two parts, i.e., (1) background images and the
mask of foreground human body with the background encoder
(Ebkg) (2) target pose and foreground human body with the
pose-guided encoder (E).

1On Market-1501, Itp is detected by OpenPose [6]; on Penn Action and
BBC-Pose, it is manually annotated [51].

1) Background Encoder: We learn the Ebkg to encode
the background image Ibkg with the corresponding mask M.
Particularly, inspired by recent inpainting work [49], we utilize
dilated convolution [48] to increase the receptive field.

2) Pose-Guided Encoder: It includes the foreground
encoder E f g processing the foreground person image Ih , and
target pose encoder Ep which learns to extract features from
target poses. Specifically, in the forward pass, the intermediate
features from the layers of Ep are used to guide the learning
process of E f g . As shown in Fig. 4, the features of Ep

are further channel-wise concatenated with the corresponding
output features of the same layers in E f g .

3) Decoder D: The outputs of three encoders are fused
to pass through decoder D. The outputs of E f g and Ep are
concatenated and then used as input of D. Note that the
shortcut connections are utilized to connect the shallower
layers of three encoders, as well as the output of Ebkg ,
to the homologous layers of D. To improve the image quality,
we utilize non-local blocks [42] in the decoder.

B. Loss Functions and Training Strategy

We define the loss function L as follows,

L = Lrec + λ1 · Lperc + λ2 · Lroi (1)

where λ1 and λ2 are two coefficients of each loss term.
1) Weighted Reconstruction Loss: The aim of this loss is to

encourage the pixels of generated images to match the target
ones; especially, the areas where person instances appear in
reference and target images. Therefore, we adopt the common
pixel-level reconstruction loss, i.e.,

Lrec = 1

N

∑
j

[∥∥∥Î( j )
s − I( j )

t

∥∥∥2 +
∣∣∣Î( j )

s − I( j )
t

∣∣∣ � (Mr + Mt )

]

(2)

where the Mr and Mt denote the binary mask matrices of
bounding box of human body on reference and target image,
individually: value 1 indicates pixels within the bounding box;
0, otherwise. � refers the element-wise product. N is the
number of images optimized. Since Eq (2) is computed on
each batch, N thus equals the batch size.

2) Perceptual Loss: This loss [16] is introduced to push
the high-level features of generated images towards the target
images; it measures the perceptual difference in content and
style between images, which is defined as,

Lperc = 1

N

∑
j

∑
l

∥∥∥�l
(

Î( j )
s

)
− �l

(
I( j )

t

)∥∥∥2
(3)

The function �l (·) is the output of the l layer in the visual
perceptual network [16], i.e., the VGG-19 [38] network pre-
trained on ImageNet-2012 dataset.

3) RoI Perceptual Loss: Despite the fact that perceptual
loss is widely used in synthesizing realistic images by the
generative models [15], [16], [55], we realize that perceptual
loss alone is not enough for the visual quality of synthesized
person body parts. In contrast to previous pose-guided person
image generation in the iconic views [23], [24], [31], [33], our

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 04:27:51 UTC from IEEE Xplore.  Restrictions apply. 



9064 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

work has to handle the cases of generating person images of
complex poses in cluttered scenes. To this end, we propose an
extension– Region of Interest (RoI) perceptual loss. It partic-
ularly optimizes the specific image regions, i.e., the regions of
person bodies, as follows,

Lroi = 1

N

∑
j

∑
l

∥∥∥φMt

(
�l

(
Î( j )

s

))
− φMt

(
�l

(
I( j )

t

))∥∥∥2

(4)

where φMt (·) is the RoI pooling layer in [35] with the
bounding box Mt ; In addition to help to localize the regions
of interest, the RoI pooling layer φ (·) also helps to keep the
output feature dimension size the same among all samples;
thus the loss can be computed via mini-batch, no matter what
size the human body is. Particularly, compared to pose mask
loss proposed in [23], our RoI perceptual loss term can be
applied to the features maps beyond the raw images; and thus
it is more flexible. Critically, the RoI perceptual loss term does
not require the extra processing over human poses to generate
the masks; and this can avoid the failure cases when some of
the key joints are missing.

4) Refinement Strategy: We introduce iterative refinement
strategy to update our model. Specifically, as shown in Fig. 4,
we treat the generated images Îs,k as the new background
images, and iteratively update the background encoder Ebkg ,
where we use the sub-index to denote the k− th round update.
In principle, this strategy could help our model gradually fill
the missing region of the background images, thus refining the
output image and accelerating the training process.

IV. EXPERIMENTS

A. Datasets and Settings

Our model is evaluated on three datasets. (1) Market-
1501. It is a person re-identification dataset [53], composed
of 32668 images and 1501 persons captured from six disjoint
surveillance cameras. We follow the previous setting [56],
which contains 263,632 training pairs and 12,000 testing pairs.
The image size is 128 × 64. (2) Penn Action. It contains 2326
videos with 15 action classes [51]. Each frame is annotated by
human poses. We gather a training set of 57,925 training pairs
of images and 4,634 testing pairs which are uniformly sampled
from all of the videos. (3) BBC-pose. It has 20 TV broadcast
videos [7]; totally 40K frames of different hosts with different
gestures. The reference and target frames are also sampled in
the same video. In the train/test split, we have 14942 frames as
training (80% total frames); and 3736 frames as test set. Quite
different from the other two datasets, the images of this dataset
has the dynamic background – news being broadcast. This
introduces additional challenges in synthesizing images. Note
that Penn Action, and BBC-pose have lots of person images
in non-iconic views, while most person images in Market-
1501 are in iconic-views; also DeepFashion [21] is not used
which has a pure white color background. Images of Penn
Action and BBC-Pose are all resized to 128 × 128.

1) Network Architectures: The detailed architecture of our
network is listed as,. Pose Encoder, Foreground Encoder:
K5C32 - Down - K5C32 - K5C64 - Down - K5C64 - K5C

128 - Down - K5C128 - K5C256 - Down - K5C256;
Background Encoder: K5C32 - K5C64 - Down - K3D2C64-
K3D4C64 - K3D8C64 - K5C128 - Down - Up(32 × 32);
Decoder: K1C256 - K5C128 - Up2 - NL128 - K5C128 -
K5C64 - Up2 - NL64 - K5C64 - K5C32 - Up2 - K5C32-
K5C3 - Up2. where K denotes kernel size; D denotes
dilation rate; Down denotes 2 ×2 max-pooling; Up(·) denotes
upsampling to target size; Up2 denotes 2 × 2 upsampling;
C, channel number; NL, non-local block with designated
channel number. All convolutional layers are with 1 stride,
and followed with ReLU and batch normalization, except that
the last convolutional layer of decoder uses tanh activation
and no batch normalization.

2) Implementation Details: Totally, our model has 8 con-
volution layers with kernel size of 5 and stride of 1 combined
with 4 Max-pooling layers for down-sample in the pose and
human body encoders, and the symmetric structure for the
decoder. For the background encoder, we use two convolution
layers, with three dilated convolution layers and two normal
convolution layers after. Our model is trained by 3 iterations,
in order to make a balance between good results and rea-
sonable computational cost. For perceptual loss, we choose
to compare feature maps at the layers of relu1_2, relu2_2,
relu3_3, relu4_3 and relu5_3. On these layers, the sizes of RoI
pooling outputs are set as 30, 30, 15, 7 and 4 respectively,
to further facilitate the RoI perceptual loss. Our model is
implemented on Pytorch [29], by Adam optimizer [17] with
the learning rate of 0.0002. The λ1, λ2 is set as 0.5 and 0.05.
The dataset and models will be released.

3) Competitors: Several previous models are utilized as
our baselines, namely, PG2 [23], PN-GAN [33], DVG [5],
PoseWarp [3], BodyROI7 [24], PATN [56] and Guided Pix2Pix
[1]. We conduct experiments of all these models based on
open-sourced codes, with parameters and learning rate simply
tuned. As discussed in the related work, BodyROI7 and
PoseWarp, intrinsically, are not applicable to synthesize person
image in the non-iconic view. Thus, BodyROI7 and PoseWarp
are only used on Penn Action, which is a typical dataset of
a large portion of people in non-iconic views, to support our
claim and experiments on these two models are not extended
to other datasets.

B. Quantitative Results

We employ Inception Score (IS), Fréchet Inception Distance
(FID), Structural Similarity (SSIM), mask-SSIM and Learned
Perceptual Image Patch Similarity (LPIPS) to evaluate the
performance of each model. Specifically, (1) Inception Score
computes distribution certainty and diversity for each gen-
erated images by an Inception model. (2) Fréchet Inception
Distance (FID) [12] measures distance of two sets of images.
(3) SSIM [43] is a metric evaluating the difference of perceived
quality between generated and target images. (4) M-SSIM
proposed in [23] evaluates the quality of generated human
body without considering the background. (5) LPIPS [50]
is a newly proposed metric on image quality. Note that,
the persons in many images of Penn Action are in non-iconic
views: very small person instances in the whole image. This
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TABLE I

QUANTITATIVE RESULTS OF ALL MODELS ON PENN ACTION AND BBC-POSE. FOR IS, SSIM AND M-SSIM, HIGHER SCORE MEANS THE BETTER, FOR
FID AND LPIPS, THE LOWER THE BETTER

TABLE II

QUANTITATIVE RESULTS OF ALL MODELS ON MARKET-1501. FOR IS,
SSIM AND M-SSIM, HIGHER SCORE MEANS THE BETTER, FOR FID

AND LPIPS, THE LOWER THE BETTER

may lead to a whole masked images black. To make a fair
comparison, we only evaluate the M-SSIM inside the ground-
truth bounding box of persons in each image of Penn Action.

1) Results: The results are summarized in Tab. I and Tab. II.
Particularly, we highlight that (1) On non-iconic datsets, our
inception scores and FID are better than those of competitors.
This indicates that, perceptually, the images synthesized by our
models have better quality than those produced by competi-
tors. Our synthesized images are more authentic with diverse
content. Meanwhile, our method is comparable to the com-
petitors on iconic dataset, i.e., Market-1501. (2) On almost all
datasets, our SSIM and M-SSIM scores are higher than those
of competitors. This suggests that our synthesized images
can better maintain the overall image structure, particularly,
the image scene. Note that, as mentioned before, images in
BBC-Pose dataset have dynamic background, i.e., the news
being broadcast (also as shown in Fig. 5). Thus the holistic
image structure may be changed.

However, we realize that these metrics can only reflect the
general image quality, but not the quality of pose changes in
the target images. To this end, we give more qualitative results,
and subjective user study to show the advantage of our model
over the other competitors.

C. Qualitative Results

We present our qualitative results on three datasets in Fig. 5,
where we compare four generated images of our model on
each dataset and baselines conditioned on the same reference
images and target poses.

As shown in Fig. 5(a), we find that generated images by
competitors are blurry, or have distorted person poses on Penn

Action dataset. This is reasonable, since previous models do
not consider the proposed tasks – pose-guided human synthesis
in the non-iconic views. Specifically, when human body moves
(the first and second row of Fig. 5(a)), the competitors could
hardly learn the target pose except that DVG and PATN,
which could only generate a blurry profile of the target
human body as well. When the position of human body does
not change a lot, and with small body scale (the third row of
Fig. 5(a)), the specific parts of body such as head produced
by competitors are not so vivid as ours. The generated images
of BodyROI7 are not only too blurry to be discriminated, but
also filled with artifacts. This indicates that this model fails
in the non-iconic image synthesis; and we will not compare
it in the rest experiments. Other methods can learn nothing
from the dataset, thus copying the reference images. Compared
to these results, our method could synthesize the correct target
human bodies with appropriate identities and background.
This demonstrates the efficacy of our model in parsing
background and human body to synthesize a new image.

In Fig. 5(c), we compare the results on Market-1501. All
models generate much more satisfied results than those on
Penn Action, with the only exception – PG2 which still syn-
thesizes vague images. However, we find that the competitors
are failed to synthesize the details in reference images, such as
logos on T-shirt (the third row of Fig. 5(c)) and color (the third
row) of the clothes; in contrast, our model can still keep such
traits of person body in the synthesized image. Moreover, note
that in the second row, the target human does not have a bag on
his back, while the reference human body has one; therefore,
the successfully generated image should also have the shoulder
straps, as shown in our result of Fig. 5(c). This further validates
that two-pathway structure could help better synthesize person
images in the non-iconic views. Furthermore, it can be seen
that our results are much more genuine than other baselines,
which is compatible with the fact that our M-SSIM scores on
this dataset far overpass the competitors.

In Fig. 5(b), we have the results on BBC-Pose, which is
an easy dataset. PN-GAN gives the worst results; and the
original human bodies are still in the generated images, but
the target poses can hardly be found. These results show
that PG2 is a very effective model on BBC-Pose that it
could generate sharp images due to the discriminator; thus it
achieves very high SSIM and M-SSIM scores. Nonetheless,
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Fig. 5. Qualitative Results on each dataset.

our model could generate not only the accurate human body,
but it could also surprisingly restore the wrinkles of cloth
and rough structure of faces as well. This further shows the
efficacy of our proposed model.

In all cases, our model could generate more sharp back-
ground, thanks to our multi-branch structure, which can
decompose and learn to store the background, as well as the
most useful information in the reference images. Furthermore,
the poses in our synthesized images are very accurate. This
indicates that the latent embedding of target human pose
learned by our main pose-guided encoder is representative
enough to help synthesize non-iconic person images. We pro-
vide more qualitative results on Penn Action in Fig. 6,
which show that our method consistently outperforms other
competitors.

D. Ablation Study

1) Are There Any Naive Methods for Pose-Guided Synthesis
in the Non-Iconic Views?: No, naive methods do not work
here. Particularly, we compare two naive baselines: (a) union-
crop: We crop out both the bounding boxes of human body
in reference images and target images. These patch pairs are

used to train all competitors and the rest parts are added to
the generated results of each model to get the final results.
As shown in Fig. 11. This method cannot learn to synthesize
the target poses correctly. (b) crop-inpaint: We crop the
human body part out for training. During inference, we scale
the generated image to the size of the bounding box of
corresponding target image and add the generated image and
the reference image after cropping together. The DeepFill
model [49] trained on Penn Action is utilized to inpaint
the cropped region. As visualized in Fig. 12, crop-inpaint
will produce the inconsistent background, due to the huge
difference between the reference and target image in training
period.

2) Number of Refinement Iterations: We train our model
with different number of iterations. With more iterations,
the model gets higher metrics, which means it can better learn
image synthesis, as illustrated in the 4, 5, 9 column of Fig. 8.
Particularly, the model trained with one iteration could only
generate images with severe distortion, and models with more
iterations gradually correct this artifact. Note that in the last
two rows, the images generated by 1 and 2 iterations still have
black areas from the original human bodies in the reference
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Fig. 6. More synthesized results of our full model on Penn Action.

TABLE III

QUANTITATIVE RESULTS OF ABLATION STUDY. FOR IS, SSIM AND M-SSIM, HIGHER SCORE MEANS THE BETTER, FOR FID AND LPIPS, THE LOWER

THE BETTER. ROI INDICATES WHETHER TRAINING WITH ROI PERCEPTUAL LOSS, #ITER. MEANS NUMBER OF ITERATIONS USED, #PATH

INDICATES WHETHER USING TWO-PATHWAY STRUCTURE AND N.L. DENOTES WHETHER USING NON-LOCAL BLOCK IN DECODER

images. The results further get improved over 3 iterations.
The qualitative results with more refinement iterations are
shown in Fig. 10. It indicates, even with only 3 iterations, our
model can still synthesize relatively good results. This further
demonstrates the efficacy of our model.

3) Effectiveness of RoI Perceptual Loss: We train our model
without RoI perceptual loss. Both the quantitative (Tab. III)
and qualitative results (the 6,9 column in Fig. 8) show that

the quality of synthesized images gets dropped significantly;
and the model cannot learn the identity information of person
body.

In addition, we try to validate the efficacy of ROI-perceptual
loss by using this term when training PN-GAN on Penn
Action and Market-1501. The results are shown in Fig. 13.
We find that on Market-1501, the ROI-perceptual can help the
model improve the performance. However, on Penn Action,
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Fig. 7. More synthesized results of our full model on Penn Action.

TABLE IV

QUANTITATIVE RESULTS OF ABLATION STUDY. FOR IS, SSIM AND M-SSIM, HIGHER SCORE MEANS THE BETTER, FOR FID AND LPIPS, THE LOWER
THE BETTER. ROI INDICATES WHETHER TRAINING WITH ROI PERCEPTUAL LOSS, #ITER. MEANS NUMBER OF ITERATIONS USED, #PATH

INDICATES WHETHER USING TWO-PATHWAY STRUCTURE AND N.L. DENOTES WHETHER USING NON-LOCAL BLOCK IN DECODER

the generated images are still very similar to the reference
images. One possible reason is the low capacity of this model
in dealing with images from the non-iconic views. Under such
setting, the model cannot learn from the target images, even if
we added ROI-perceptual loss to focus on human body. This
supports our conclusion that non-iconic setting is not trivial
and is worth to be considered.

4) Effectiveness of Pose-Guided Encoder and Non-Local
Block: The pose-guided encoder is replaced by a single
encoder whose structure is the same as E f g , except that the
input is the concatenation of pose image and reference human
body image. The results of model with and without two-
pathway structure (as shown in the 1,4 row in Fig. 8) indicate
that, for some complex poses, the two-pathway structure
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Fig. 8. Comparison of the different methods with the same reference images
and target poses. “I1” indicates the image with one iteration; RoI denotes
the RoI perceptual loss; 2Path denotes two-pathway structure; NL denotes
non-local block.

Fig. 9. Comparison of the different settings of hyper-parameter λ1 and
λ2 with the same reference images and target poses. “0/0.05” denotes λ1 =
0, λ2 = 0.05 and the others are the same.

Fig. 10. Qualitative comparison with more number of refinements. “I3”
indicates the Image with 3 iterations.

could indeed help the model focus on corresponding parts of
reference person bodies. Moreover, the results prove that even
without the non-local blocks, our model still outperforms the
baselines on Penn Action in Inception Score and M-SSIM,
and the non-local blocks could further boost the performance.

5) Effectiveness of Hyper-Parameter λ1 and λ2: We try to
train our model with different sets of λ1, λ2. The qualitative
results are shown in Fig. 9 which results reflect that (a) It
is still necessary to use original perceptual loss. (b) As λ2
increases, the performance slight drops. We think these are

Fig. 11. Competitors are trained by cropped images and the remain parts are
added to the generated results. Our results are produced by our framework.

TABLE V

USER STUDY RESULTS ON PENN ACTION AND MARKET-1501. S, AU.
AND AC. INDICATES THE SHARPNESS, AUTHENTICITY AND ACCURACY

RESPECTIVELY. HIGHER IS BETTER FOR ALL MEASURES

consistent with our design since the ROI-perceptual loss is
proposed to improve the specific quality for regions of human
body. If its scale is comparable to or more than that of the
perceptual loss, then the model will stress on the human body
but omit the background, thus resulting in worse performance.

6) User Study: We conduct user study here. Fifteen subjects
unfamiliar with the project were recruited for the study.
We randomly picked 50 generated images with their ground
truth. During the user study, the participants are asked to
evaluate these three metrics: (a) Sharpness: the participants
are presented with images (could be generated by different
methods or real) and are asked to judge whether the images
are clear enough, which can be defined as ”clear enough to
discriminate what this image is about”. (b) Authenticity: we
provide participants with image pairs containing a generated
image and a corresponding image, and ask them to decide
which one is fake. For the first question, the participants are
asked to give a true or false choice and for the latter they
need to choose one image. (c) Accuracy: we present generated
images with corresponding target images, and ask participants
to judge the accuracy, which means whether one generated
image is showing the same pose as the target image. We report
the mean scores of all metrics in Tab. V. These results confirm
our conclusion that, compared to baselines, our model can have
better results on the pose-guided person image synthesis both
in iconic and non-iconic views. The generated images are both
much more authentic and accurate than the images produced
in other models.

7) Failure Cases: We provide two failure cases to further
discuss this task. In Fig. 14, the target image needs the extra
information which is not shown in the reference image. Even
in such a case, our model can still be able to recover the
general shape of the target pose. This actually reflects the
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Fig. 12. Competitors are trained by cropped images and the cropped out area is inpainted by DeepFill.

Fig. 13. PN-GAN is trained with ROI-perceptual loss on Penn Action and
Market-1501.

Fig. 14. A failure case of our model caused by incomplete reference
information.

Fig. 15. A failure case of our model caused by inaccurate human mask.

efficacy of our model. In Fig. 15, the mask predicted by Mask-
RCNN may not be accurate enough, which results in the low
quality of the generated image. However, our strategy is still

Fig. 16. Visualization of different strategies to produce masks.

the best among the existing methods adopting masks to split
foreground and background, including PoseWarp, which uti-
lizes a network to learn the masks, and BodyROI7 which uses
morphological erosion and dilation to transfer joint heatmaps
to masks. To further show this point, we visualize some
samples with masks produced by these methods in Fig. 16.
We find that PoseWarp cannot learn any useful information to
produce good mask, so that this model is failed to predict
all target poses. As a comparison, non-learnable methods,
i.e., BodyROI7 and ours are more suitable. However, since
only fixed parameter can be used in BodyROI7 for those
images in non-iconic views, the changeable body scale would
lead to the worse performance.

V. CONCLUSION

This paper presents a new model targeting pose-guided
person image synthesis in the non-iconic views. We propose
the MR-Net in parsing and encoding the information of
foreground person body, and background scene separately. RoI
perceptual loss and iterative refinement strategy are proposed
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here. Experiments on three datasets demonstrate the effective-
ness of our model over the competitors.

REFERENCES

[1] B. Albahar and J.-B. Huang, “Guided image-to-image translation with
bi-directional feature transformation,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 9016–9025.

[2] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” 2017,
arXiv:1701.07875. [Online]. Available: http://arxiv.org/abs/1701.07875

[3] G. Balakrishnan, A. Zhao, A. V. Dalca, F. Durand, and J. Guttag,
“Synthesizing images of humans in unseen poses,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8340–8348.

[4] D. Berthelot, T. Schumm, and L. Metz, “BEGAN: Boundary equilibrium
generative adversarial networks,” 2017, arXiv:1703.10717. [Online].
Available: http://arxiv.org/abs/1703.10717

[5] H. Cai, C. Bai, Y.-W. Tai, and C.-K. Tang, “Deep video genera-
tion, prediction and completion of human action sequences,” 2017,
arXiv:1711.08682. [Online]. Available: http://arxiv.org/abs/1711.08682

[6] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh,
“OpenPose: Realtime multi-person 2D pose estimation using
part affinity fields,” 2018, arXiv:1812.08008. [Online]. Available:
http://arxiv.org/abs/1812.08008

[7] J. Charles, T. Pfister, M. Everingham, and A. Zisserman, “Automatic
and efficient human pose estimation for sign language videos,” Int. J.
Comput. Vis., vol. 110, no. 1, pp. 70–90, Oct. 2014.

[8] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2016.

[9] H. Dong, X. Liang, K. Gong, H. Lai, J. Zhu, and J. Yin, “Soft-gated
warping-gan for pose-guided person image synthesis,” in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 474–484.

[10] J. He, A. Lehrmann, J. Marino, G. Mori, and L. Sigal, “Probabilistic
video generation using holistic attribute control,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), Sep. 2018, pp. 452–467.

[11] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), 2017, pp. 2980–2988.

[12] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 6626–6637.

[13] S. C. Hidayati, C.-C. Hsu, Y.-T. Chang, K.-L. Hua, J. Fu, and
W.-H. Cheng, “What dress fits me best?: Fashion recommendation on
the clothing style for personal body shape,” in Proc. ACM Multimedia
Conf. Multimedia Conf. (MM), 2018, pp. 438–446.

[14] C.-W. Hsieh, C.-Y. Chen, C.-L. Chou, H.-H. Shuai, J. Liu, and
W.-H. Cheng, “FashionOn: Semantic-guided image-based virtual try-on
with detailed human and clothing information,” in Proc. 27th ACM Int.
Conf. Multimedia, Oct. 2019, pp. 275–283.

[15] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 1125–1134.

[16] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proc. Eur. Conf. Comput. Vis.
New York, NY, USA: Springer, 2016, pp. 694–711.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[18] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114. [Online]. Available: http://arxiv.org/abs/1312.6114

[19] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis. New York, NY, USA: Springer, 2014,
pp. 740–755.

[20] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro,
“Image inpainting for irregular holes using partial convolutions,” 2018,
arXiv:1804.07723. [Online]. Available: http://arxiv.org/abs/1804.07723

[21] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang, “DeepFashion: Power-
ing robust clothes recognition and retrieval with rich annotations,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1096–1104.

[22] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[23] L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool, “Pose
guided person image generation,” in Proc. Adv. Neural Inf. Process.
Syst., 2017, pp. 406–416.

[24] L. Ma, Q. Sun, S. Georgoulis, L. Van Gool, B. Schiele, and M. Fritz,
“Disentangled person image generation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 99–108.

[25] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley,
“Least squares generative adversarial networks,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 2813–2821.

[26] J. Miao, Y. Wu, P. Liu, Y. Ding, and Y. Yang, “Pose-guided feature
alignment for occluded person re-identification,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 542–551.

[27] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recur-
rent neural networks,” 2016, arXiv:1601.06759. [Online]. Available:
http://arxiv.org/abs/1601.06759

[28] A. V. D. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves,
and K. Kavukcuoglu, “Conditional image generation with PixelCNN
decoders,” in Proc. 30th Int. Conf. Neural Inf. Process. Syst. Red Hook,
NY, USA: Curran Associates Inc., 2016, pp. 4797–4805.

[29] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. Autodiff
Workshop 31st Conf. Neural Inf. Process. Syst. (NIPS), Long Beach, CA,
USA, 2017.

[30] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2536–2544.

[31] A. Pumarola, A. Agudo, A. Sanfeliu, and F. Moreno-Noguer, “Unsu-
pervised person image synthesis in arbitrary poses,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8620–8628.

[32] G.-J. Qi, “Loss-sensitive generative adversarial networks on
lipschitz densities,” 2017, arXiv:1701.06264. [Online]. Available:
http://arxiv.org/abs/1701.06264

[33] X. Qian et al., “Pose-normalized image generation for per-
son re-identification,” 2017, arXiv:1712.02225. [Online]. Available:
http://arxiv.org/abs/1712.02225

[34] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” 2015,
arXiv:1511.06434. [Online]. Available: http://arxiv.org/abs/1511.06434

[35] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 91–99.

[36] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. New York, NY, USA: Springer,
2015, pp. 234–241.

[37] A. Siarohin, E. Sangineto, S. Lathuiliere, and N. Sebe, “Deformable
GANs for pose-based human image generation,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3408–3416.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[39] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther,
“Ladder variational autoencoders,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 3738–3746.

[40] Y. Sun, L. Zheng, Y. Li, Y. Yang, Q. Tian, and S. Wang, “Learning
part-based convolutional features for person re-identification,” IEEE
Trans. Pattern Anal. Mach. Intell., early access, Sep. 5, 2019, doi:
10.1109/TPAMI.2019.2938523.

[41] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba, “HOGgles:
Visualizing object detection features,” in Proc. IEEE Int. Conf. Comput.
Vis., Dec. 2013, pp. 1–8.

[42] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 7794–7803.

[43] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[44] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with
deep neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2012,
pp. 341–349.

[45] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1395–1403.

[46] C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-resolution:
A benchmark,” in Proc. Eur. Conf. Comput. Vis. New York, NY, USA:
Springer, 2014, pp. 372–386.

[47] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,
“Understanding neural networks through deep visualization,” 2015,
arXiv:1506.06579. [Online]. Available: http://arxiv.org/abs/1506.06579

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 04:27:51 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TPAMI.2019.2938523


9072 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

[48] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” 2015, arXiv:1511.07122. [Online]. Available:
http://arxiv.org/abs/1511.07122

[49] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Generative
image inpainting with contextual attention,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 5505–5514.

[50] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unrea-
sonable effectiveness of deep features as a perceptual metric,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 586–595.

[51] W. Zhang, M. Zhu, and K. G. Derpanis, “From actemes to action:
A strongly-supervised representation for detailed action understanding,”
in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 2248–2255.

[52] L. Zheng, Y. Huang, H. Lu, and Y. Yang, “Pose-invariant embedding
for deep person re-identification,” IEEE Trans. Image Process., vol. 28,
no. 9, pp. 4500–4509, Sep. 2019.

[53] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scal-
able person re-identification: A benchmark,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 1116–1124.

[54] R. Zhou, X. Chang, L. Shi, Y.-D. Shen, Y. Yang, and F. Nie, “Person
reidentification via multi-feature fusion with adaptive graph learning,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 5, pp. 1592–1601,
May 2020.

[55] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” 2017,
arXiv:1703.10593. [Online]. Available: http://arxiv.org/abs/1703.10593

[56] Z. Zhu, T. Huang, B. Shi, M. Yu, B. Wang, and X. Bai, “Progressive pose
attention transfer for person image generation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2347–2356.

Chengming Xu received the bachelor’s degree in
computer science from Fudan University in 2018,
where he is currently pursuing the Ph.D. degree in
statistics advised by Prof. Y. Fu.

Yanwei Fu received the Ph.D. degree from the
Queen Mary University of London in 2014 and the
M.Eng. degree from the Department of Computer
Science and Technology, Nanjing University, China,
in 2011. He held a postdoctoral position at Disney
Research, Pittsburgh, PA, USA, from 2015 to 2016.
He is currently a tenure-track Professor with Fudan
University. His research interests are image and
video understanding, and life-long learning.

Chao Wen received the B.E. degree in computer
science from the University of Electronic Science
and Technology of China, in 2018. He is currently
pursuing the master’s degree with the Academy for
Engineering and Technology, Fudan University. His
research is focused on 3D computer vision and
human image synthesis.

Ye Pan received the B.Sc. degree in communication
and information engineering from Purdue/UESTC
in 2010 and the Ph.D. degree in computer graphics
from the University College London (UCL) in 2015.
She is currently an Associate Professor with Shang-
hai Jiao Tong University. Her research interests
include AR/VR, avatars/characters, 3D animations,
HCI, and computer graphics. She was selected as a
Forbes China 30 Under 30 In Science 2019.

Yu-Gang Jiang (Member, IEEE) is currently a Pro-
fessor of computer science with Fudan University,
China, where he also serves as the Dean of the
School of Computer Science and the School of
Software. His research is focused on multimedia,
computer vision, and robust and trustworthy AI.
He is also an Associate Editor of ACM TOMM.

Xiangyang Xue (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in communication engineer-
ing from Xidian University, Xi’an, China, in 1989,
1992, and 1995, respectively. He is currently a
Professor of computer science with Fudan Univer-
sity, Shanghai, China. His research interests include
computer vision, multimedia information processing,
and machine learning.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 04:27:51 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


